Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies new risk factor for heart disease among kidney dialysis patients

07.03.2013
Findings show that measurements of carbamylated albumin may help doctors in monitoring dialysis patients; further suggests that amino acid supplementation could offset protein carbamylation

Kidney failure affects 25 million individuals in the U.S. and many more throughout the world. Loss of kidney function means the majority of these patients must undergo dialysis treatments to remove excess fluids and waste products.

Although dialysis therapy coupled with medication has improved the life expectancy for people with kidney failure, for unknown reasons, patients' risk of sudden heart failure and death remains 10 to 20 times greater than average.

Now, a study led by researchers at Beth Israel Deaconess Medical Center (BIDMC) and Massachusetts General Hospital helps explain why this may be the case. Appearing on-line today in Science Translational Medicine, the new findings show that a process known as protein carbamylation contributes to heart disease risk among patients with kidney failure undergoing dialysis, and demonstrates that a blood test to measure carbamylated albumin protein can help clinicians better gauge the effectiveness of dialysis and identify patients at risk of cardiac complications. The findings additionally suggest the need for further investigation to determine if therapy with supplemental amino acids could help to prevent the carbamylation process.

"Patients with kidney failure often accumulate urea in their blood because it is a chemical byproduct of metabolism normally eliminated in the urine or removed by dialysis treatments," explains first author Anders Berg, MD, PhD, a clinical chemist in the Department of Pathology at BIDMC and Instructor in Pathology at Harvard Medical School. Although urea is generally non-toxic, in some cases it can degrade into cyanate, a toxic chemical that binds to and permanently modifies proteins through a process known as carbamylation.

"These modifications can make proteins inactive, or worse, can make them toxic," says Berg. "For example, when the cholesterol-carrying blood proteins LDL and HDL are carbamylated, instead of heading for tissues where they would normally be metabolized, they become attracted to atherosclerotic plaques which can lead to the development of atherosclerosis or hardening of the arteries."

Knowing that there is growing evidence that urea and protein carbamylation are important contributors to the risk of heart disease and death in patients with kidney failure, Berg and his collaborators hypothesized that measurements of carbamylated albumin – the most abundant protein in the blood --could provide an index of patients' blood urea concentrations and could be used in a blood test to provide clinicians with information on how well dialysis treatments are working to remove body waste products from patients with kidney failure.

As predicted, in two independent clinical experiments, the investigators demonstrated that increased carbamylated albumin is strongly associated with an elevated risk of premature death in patients on dialysis. They additionally found that increased carbamylated albumin in dialysis patients was linked with low blood concentrations of amino acids, the building blocks of proteins.

"This suggests that amino acid deficiencies may contribute to increased protein carbamylation in dialysis patients," says Berg. "In separate experiments in both cells and in mice, we found that amino acids act as carbamylation scavengers, competitively inhibiting protein carbamylation."

The researchers were able to generate their findings through a variety of complex studies, including protein screening experiments to search for sites of carbamylation on albumin and observational studies in which they first measured albumin carbamylation in blood samples from patients with kidney disease and then followed the patients to determine whether the extent of carbamylation correlated with risk of premature death. The investigators also measured blood concentrations of amino acids in 187 patients to determine if amino acid deficiencies were linked with increased protein carbamylation. They also conducted experiments to test whether inducing amino acid deficiencies in animals led to increased protein carbamylation by urea. Finally, they conducted test tube experiments to investigate whether amino acids could directly inhibit protein carbamylation.

"Although dialysis therapy is life-saving and necessary to remove excess water and urea for patients with kidney failure, it also depletes patients' amino acids and other essential nutrients. In this way it removes both the good and the bad, and thus simply increasing patients' dialysis treatments will not necessarily reduce protein carbamylation," says Berg, adding that future studies will be needed to test whether amino-acid supplementation therapy reduces protein carbamylation and its associated risks, or if there are ways of modifying dialysis methods in order to remove urea without depleting amino acids.

"The mechanisms that lead to cardiovascular disease in patients with chronic kidney disease have remained elusive," says nephrologist Vikas Sukhatme, MD, PhD, Chief Academic Officer of BIDMC. "This paper provides an important first step in identifying kidney failure patients on dialysis at risk for cardiovascular disease and providing a rationale for treating them with inexpensive and non-toxic medicines such as amino acids."

Study coauthors include BIDMC investigators Roberto Buccafusca, Tammy Hod, Wenda Ramma, Samir M. Parikh, David J. Friedman, John Danziger, and senior author and Howard Hughes Medical Institute investigator S. Ananth Karumanchi; Christiane Drechsler and Christoph Wanner, of the University of Würzburg, in Germany; Julia Wenger, Sahir Kalim, and Ravi Thadhani of Massachusetts General Hospital; and Hanno Steen of Children's Hospital Boston.

This work was funded, in part, by support from the Howard Hughes Medical Institute, the National Institutes of Health (K24 DK094872) and the University Hospital Wurzberg "Gundausstattung" grant program.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and currently ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu
http://www.bidmc.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>