Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies potential fix for damaged knees

13.07.2009
Investigators from Hospital for Special Surgery have shown that a biodegradable scaffold or plug can be used to treat patients with damaged knee cartilage.

The study is unique in that it used serial magnetic resonance imaging (MRI) and newer quantitative T2 mapping to examine how the plug incorporated itself into the knee. The research, abstract 8372, will be presented during the annual meeting of the American Orthopedic Society for Sports Medicine, June 9-12, in Keystone, Colo.

"The data has been encouraging to support further evaluation of this synthetic scaffold as a cartilage repair technique," said Asheesh Bedi, M.D., a fellow in sports medicine and shoulder surgery at Hospital for Special Surgery who was involved with the study. Dr. Bedi performed analysis of MRI scans of patients primarily treated by Riley Williams, M.D., director of the Institute for Cartilage Repair at Hospital for Special Surgery. "The Trufit plug has been designed to have mechanical properties that are similar to cartilage and bone," Dr. Bedi said.

Damage to so-called articular cartilage can occur in various ways, ranging from direct trauma in a motor vehicle accident to a noncontact, pivoting event on the soccer field. "Articular cartilage lacks the intrinsic properties of healing—you are essentially born with the articular cartilage that you have," Dr. Bedi said. Left untreated, these injuries can increase loads placed on the remaining intact cartilage and increase the risk of progression to degenerative arthritis. One way to treat patients with symptomatic chondral lesions is an OATS procedure, in which cartilage is transferred from one portion of the knee to treat another. Because this is a "robbing Peter to pay Paul" situation, researchers at Hospital for Special Surgery set out to examine whether they could use a biodegradable plug, the Trufit CB plug, to fill the donor site. The goal was to monitor how the plug incorporated itself into the knee and to evaluate the quality of the repair cartilage.

The Trufit plug has two layers. The top layer has properties similar to cartilage and the lower layer has properties similar to bone. The bilayered structure has mechanical properties that approximately match the adjacent cartilage and bone. Surgeons inserted the plug in the knees of 26 patients with donor lesions from OATS procedures and followed up with imaging studies (with MRI and T2-mapping) at various intervals for a period of 39 months.

"Quantitative MRI, when combined with morphologic assessment, allows us to understand the natural history of these repair techniques and define those patients who are most likely to benefit from the surgery," said Hollis Potter, M.D., chief of the Division of Magnetic Resonance Imaging, director of Research in the Department of Radiology and Imaging at Hospital for Special Surgery and lead author of the study. "We gain knowledge about the biology of integration with the host tissue, as well as the repair tissue biochemistry, all by a noninvasive imaging technique."

"What we found was that the plug demonstrated a predictable process of maturation on imaging studies that paralleled the biology of their incorporation," Dr. Bedi said. "With increasing postoperative duration, the repair tissue demonstrated encouraging properties with T2-values that resembled native articular cartilage."

Dr. Williams, Dr. Bedi and other surgeons at Hospital for Special Surgery are involved in ongoing studies to investigate the efficacy of the TruFit plug in treating primary cartilage defects as well. "What is unique about this study is that we have serial MRI with T2 mapping at various time points after surgery, which allows us to really examine the natural history of plug incorporation," Dr. Bedi said.

Dr. Williams believes that there is a role for scaffold-based cartilage repair strategies in the treatment of symptomatic cartilage lesions. "It is our hope that we can successfully treat these cartilage problems over the long term, thus restoring normal knee function and slowing the progression of knee arthritis," Dr. Williams said.

Other authors involved in the study are Li Foong Foo, M.D., and the Cartilage Study Group.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics and No. 4 in rheumatology by U.S. News & World Report (2008), and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center. In 2008 and 2007, HSS was a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

Further reports about: Bedi HSS Hospital MRI MRI scan Medical Wellness OATS Prostate Surgery autoimmune disease cartilage

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>