Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key cause of chronic leukemia progression

05.03.2010
Researchers have discovered a key reason why a form of leukemia progresses from its more-treatable chronic phase to a life-threatening phase called blast crisis.

The study, led by cancer researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James), indicates that chronic myeloid leukemia (CML) progresses when immature white blood cells lose a molecule called miR-328.

Loss of the molecule traps the cells in a rapidly growing, immature state. The cells soon fill the bone marrow and spill into the bloodstream, a tell-tale sign that the disease has advanced to the blast crisis stage.

The research, published in the March 5th issue of the journal Cell, should provide a better understanding of the blast-crisis stage of CML, and it suggests a possible new treatment strategy for the disease, the researchers say.

"These findings indicate that the loss of miR-328 is probably essential for progression from the chronic phase of the disease to the blast crisis stage," says principal investigator Danilo Perrotti, associate professor of molecular virology, immunology and medical genetics and a member of the OSUCCC-James.

"Our findings also suggest that maintaining the level of this microRNA might represent a new therapeutic strategy for CML blast crisis patients who do not benefit from targeted agents such as imatinib (Gleevec) and dasatinib (Sprycel)," Perrotti says

The study also revealed a new function for microRNA. Researchers have known for some time that these molecules help regulate the kinds of proteins that cells make. But this study shows for the first time that microRNA molecules can also attach directly to protein molecules and alter their function.

In this case, miR-328 binds to a protein that prevents immature blood cells from maturing. "We believe that it normally acts as a decoy molecule, tying up the protein and enabling the white blood cells to mature as they should," Perrotti says.

During CML progression, however, the level of miR-328 drops, allowing the protein to be extremely active. This keeps the leukemic white blood cells from maturing and contributes to the transition from the chronic-disease phase to blast crisis phase.

"These findings may help unravel novel pathways responsible for the initiation and progression of leukemia generally," Perrotti says.

Funding from the National Cancer Institute and the U.S. Army, CML Research Program supported this research. Danilo Perrotti is a Scholar of The Leukemia and Lymphoma Society.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CML Cancer Imatinib MicroRNA OSUCCC-James blast crisis blood cell dasatinib miR-328 white blood cell

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>