Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies which children do not need CT scans after head trauma

15.09.2009
Research provides new guidelines to identify children with mild injuries and reduce radiation exposure from CT

A substantial percentage of children who get CT scans after apparently minor head trauma do not need them, and as a result are put at increased risk of cancer due to radiation exposure.

After analyzing more than 42,000 children with head trauma, a national research team led by two UC Davis emergency department physicians has developed guidelines for doctors who care for children with head trauma aimed at reducing those risks.

Their findings appear in an article published online today and in an upcoming edition of The Lancet.

The collaborative study includes data collected at 25 hospitals from children who were evaluated for the possibility of serious brain injury following trauma to the head. Researchers found that one in five children over the age of 2 and nearly one-quarter of those under 2 who received CT scans following head trauma did not need them because they were at very low risk of having serious brain injuries. In these low-risk children, the risk of developing cancer due to radiation exposure outweighed the risk of serious brain injury.

"When you have a sample size this large, it is easier to get your hands on the truth," said Nathan Kuppermann, professor and chair of emergency medicine, professor of pediatrics at UC Davis Children's Hospital and lead author of the study. "We think our investigation provides the best available evidence regarding the use of CT scans in children with head trauma, and it indicates that CT use can be safely reduced by eliminating its application in those children who are at very low risk of serious brain injuries."

As part of the study, Kuppermann and his colleagues developed a set of rules for identifying low-risk patients who would not need a CT. The "prediction rules" for children under 2 and for those 2 and older depend on the presence or absence of various symptoms and circumstances, including the way the injury was sustained, a history of loss of consciousness, neurological status at the time of evaluation and clinical evidence of skull fracture for both age groups. The use of CT in patients who do not fall into the low-risk group identified by the prediction rules will depend on other factors, such as the physician's experience, the severity and number of symptoms, and other factors.

The Centers for Disease Control estimates that 435,000 children under 14 visit emergency rooms every year to be evaluated for traumatic brain injury (TBI). Not all head trauma results in a TBI. The severity of a brain injury may range from mild, causing brief change in mental status or consciousness, to severe, causing permanent symptoms and irreversible damage.

For years, studies have suggested that CT scans were being overused to rule out traumatic brain injuries. However, those studies were considered too small to be sufficiently accurate and not precise enough to be widely applicable to a general population. The sheer size of the current study, and the fact that the investigators created the accurate prediction rules with one large group of children with head trauma and then tested the rules on another large but separate group to demonstrate their validity, allows physicians to have confidence in the results. The researchers emphasized, however, that the rules are not intended to replace clinical judgment.

"We're arming the clinician with the best available evidence so that they can make the best decisions," said James Holmes, professor of emergency medicine at UC Davis School of Medicine and a co-author of the report. "There certainly are instances when the risks of radiation are worth it, such as in cases of blunt head trauma which result in changes in neurological status or clinical evidence of skull fractures. However, clinicians need reliable data to help them make those judgment calls when it is not clear whether or not a patient needs a CT. Until now, physicians haven't had data based on large and validated research."

The current study comes on the heels of an article published in late August by The New England Journal of Medicine that showed that at least 4 million Americans under age 65 are exposed to high doses of radiation each year from medical imaging tests, with CT scans accounting for almost one half of the total radiation dose. About 10 percent of those get more than the maximum annual exposure allowed for nuclear power plant employees or anyone else who works with radioactive material.

Studies show that exposure to radiation increases the risk of cancer. Radiation exposure to the brain of developing children is of particular concern and must be weighed carefully against the risk of traumatic brain injury that could cause permanent damage or death if not identified early. If the new guidelines are applied appropriately, the use of CT scans nationwide could be significantly reduced.

The effort was made possible by the Pediatric Emergency Care Applied Research Network (PECARN), which enabled the massive collection of data. Supported by the U.S. Department of Health and Human Services' Emergency Medical Services for Children Program, PECARN is the first federally-funded, multi-institutional network for research in pediatric emergency medicine in the nation. The network conducts research into the prevention and management of acute illnesses and injuries in children and youth across the continuum of emergency medicine and health care.

"Children with medical and traumatic illnesses usually have good outcomes, but you need a lot of children to assess factors and treatments that predict both good and bad outcomes. By studying large numbers of children, in a variety of settings and from diverse populations, the results will more likely be applicable to the general population. That's the power of PECARN," Kuppermann said. "Combined, our network of emergency departments around the country evaluates approximately 1 million children per year."

Along with the UC Davis team, key PECARN researchers in the Lancet study included Peter S. Dayan, from New York-Presbyterian Hospital and Columbia University Medical Center in New York; John D. Hoyle, Jr., from Helen DeVos Children's Hospital in Grand Rapids; Shireen M. Atabaki, from Children's National Medical Center in Washington, D.C.; and Richard Holubkov from the PECARN Data Coordinating Center at the University of Utah.

In order to create the prediction rules, the PECARN investigators studied outcomes in more than 42,000 children with minor initial symptoms and signs of head trauma. CT scans were performed in nearly 15,000 of those patients. Serious brain injuries were diagnosed in 376 children, and 60 children underwent neurosurgery.

Using these data, the researchers developed two prediction rules for identifying mild cases that do not need CT scans. One rule was developed for children under the age of 2 and another for those 2 and over. It was important to study children under 2 separately because they cannot communicate their symptoms or offer information as well as older children, and they are more sensitive to the effects of radiation.

Children under 2 who fell into the low-risk group showed normal mental status, no scalp swelling, no significant loss of consciousness, no palpable skull fracture, were normal-acting (according to the parent), and had an injury that was sustained in a non-severe way. Severe accidents, which excluded children from the low-risk group, included motor vehicle crashes in which the patient was ejected, and bicycle accidents involving automobiles, in which the patient was not wearing a helmet. Key indicators for children older than 2 who were at low-risk for brain injury included normal mental status, no loss of consciousness, no vomiting, no signs of fracture of the base of skull, no severe headache, and they did not sustain the injury in a serious accident.

The researchers then validated these rules by applying them to data from a second population of more than 8,600 children. In more than 99.9 percent of the cases, the rules accurately predicted children who were not diagnosed with serious brain injuries and were therefore indeed at low risk..

The researchers also identified and separated children at intermediate and high risk of serious brain injuries. Those in the high-risk group should receive CT scans, the researchers wrote. The PECARN team is currently working on refining recommendations for the use of CT scans in those at intermediate risk. Until now, emergency room physicians have relied mostly on instincts when deciding whether or not the symptoms of a child with head trauma warrant the use of CT.

"Now we have much better evidence to assist with making decisions regarding CT use," Kuppermann said.

UC Davis has been part of PECARN since its inception in 2001. It is the leading center in one of four PECARN Research Nodes, which also includes Children's Hospital of Philadelphia; St. Louis Children's Hospital; Children's Hospital of Wisconsin; Cincinnati Children's Hospital Medical Center; and Primary Children's Medical Center in Salt Lake City.

A total of 32 PECARN researchers were substantially involved in this study. This research was supported by the Emergency Medical Services for Children program of the Maternal and Child Health Bureau, and the Maternal and Child Health Bureau Research Program, Health Resources and Services Administration, U.S. Department of Health and Human Services.

Charlie Casey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>