Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of huge numbers of genetic mutations point to oxidative stress as underlying cause

09.09.2009
A study that tracked genetic mutations through the human equivalent of about 5,000 years has demonstrated for the first time that oxidative DNA damage is a primary cause of the process of mutation - the fuel for evolution but also a leading cause of aging, cancer and other diseases.

The research, just published in Proceedings of the National Academy of Sciences, also indicated that natural selection is affecting the parts of the genome that don't contain genes – supposedly "junk" DNA that increasingly appears to have important roles in life processes that are very poorly understood.

The analysis was done by scientists at Oregon State University, Indiana University, the University of Florida and University of New Hampshire, in studies supported by the National Institutes of Health.

This research was unusual, scientists say, because the model animal used for the study, a type of roundworm called C. elegans, was tracked through 250 generations and in that period of time accumulated 391 genetic mutations through normal life processes. That's more than 10 times as many mutations as have ever before been tracked in a study such as this.

Several Nobel Prizes have been awarded based on studies done with this roundworm, which was the first animal to have its entire genome sequenced. And despite their vast evolutionary separation as life forms, this tiny roundworm and humans still share comparable forms of DNA maintenance.

"Genetic mutations in animals are actually pretty rare, they don't happen very often unless they are induced by something," said Dee Denver, an assistant professor of zoology at OSU and principal investigator on the study. "The value of using this roundworm is that it reaches reproductive age in about four days, so we can study changes that happen through hundreds of generations, using advanced genome sequencing technology."

Genetic mutations can take various forms, such as a disruption in the sequence of DNA bases, larger deletions of whole sections of DNA, or other events. They are a fundamental part of the biological process of life and the basis of evolution, allowing organisms to change – sometimes in ways that are good and lead to greater survival value, sometimes bad and leading to decline or death. But the process is difficult to study and a real understanding of the driving forces behind mutation, its frequency, and the types of mutation that happen most often has been elusive, researchers say.

A primary finding of the new study is that a predominant number of genetic mutations – most, but not all of them – are linked to guanine, one of the four basic nucleotides that make up DNA and form the genetic code of life. Guanine is known to be particularly sensitive to oxidative damage.

"Most life on Earth depends in some form on oxygen, which is great at the production of energy," Denver said. "But we pay a high price for our dependence on oxygen, because the process of using it is not 100 percent efficient, and it can result in free oxygen radicals that can damage proteins, fats and DNA. And this process gets worse with age, as free radicals accumulate and begin to cause disease."

This is one of the first studies, Denver said, that is clearly demonstrating the effects of oxidative damage at a genome-wide scale.

"The research showed that the majority of all DNA mutations bear the signature of oxidative stress," Denver said. "That's exactly what you would expect if you believe that oxidative stress is an underlying cause of aging and disease."

Beyond that, however, the study also found that mutation and natural selection is also operating in the "junk DNA" parts of the roundworm, which actually comprises about 75 percent of its genome but traditionally was not thought to play any major role in life and genetic processes. This suggests that these poorly-understood and little appreciated parts of the genome may have important biological roles that are not yet known, Denver said.

Oxidative stress for decades has been suspected as a mechanism for some of the processes that lead to aging and disease, and it has been studied extensively for that reason. This research provides a better fundamental understanding of the genetic impacts of oxidative stress and its role in both genetic disease and evolution, researchers say.

Dee Denver | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>