Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of huge numbers of genetic mutations point to oxidative stress as underlying cause

09.09.2009
A study that tracked genetic mutations through the human equivalent of about 5,000 years has demonstrated for the first time that oxidative DNA damage is a primary cause of the process of mutation - the fuel for evolution but also a leading cause of aging, cancer and other diseases.

The research, just published in Proceedings of the National Academy of Sciences, also indicated that natural selection is affecting the parts of the genome that don't contain genes – supposedly "junk" DNA that increasingly appears to have important roles in life processes that are very poorly understood.

The analysis was done by scientists at Oregon State University, Indiana University, the University of Florida and University of New Hampshire, in studies supported by the National Institutes of Health.

This research was unusual, scientists say, because the model animal used for the study, a type of roundworm called C. elegans, was tracked through 250 generations and in that period of time accumulated 391 genetic mutations through normal life processes. That's more than 10 times as many mutations as have ever before been tracked in a study such as this.

Several Nobel Prizes have been awarded based on studies done with this roundworm, which was the first animal to have its entire genome sequenced. And despite their vast evolutionary separation as life forms, this tiny roundworm and humans still share comparable forms of DNA maintenance.

"Genetic mutations in animals are actually pretty rare, they don't happen very often unless they are induced by something," said Dee Denver, an assistant professor of zoology at OSU and principal investigator on the study. "The value of using this roundworm is that it reaches reproductive age in about four days, so we can study changes that happen through hundreds of generations, using advanced genome sequencing technology."

Genetic mutations can take various forms, such as a disruption in the sequence of DNA bases, larger deletions of whole sections of DNA, or other events. They are a fundamental part of the biological process of life and the basis of evolution, allowing organisms to change – sometimes in ways that are good and lead to greater survival value, sometimes bad and leading to decline or death. But the process is difficult to study and a real understanding of the driving forces behind mutation, its frequency, and the types of mutation that happen most often has been elusive, researchers say.

A primary finding of the new study is that a predominant number of genetic mutations – most, but not all of them – are linked to guanine, one of the four basic nucleotides that make up DNA and form the genetic code of life. Guanine is known to be particularly sensitive to oxidative damage.

"Most life on Earth depends in some form on oxygen, which is great at the production of energy," Denver said. "But we pay a high price for our dependence on oxygen, because the process of using it is not 100 percent efficient, and it can result in free oxygen radicals that can damage proteins, fats and DNA. And this process gets worse with age, as free radicals accumulate and begin to cause disease."

This is one of the first studies, Denver said, that is clearly demonstrating the effects of oxidative damage at a genome-wide scale.

"The research showed that the majority of all DNA mutations bear the signature of oxidative stress," Denver said. "That's exactly what you would expect if you believe that oxidative stress is an underlying cause of aging and disease."

Beyond that, however, the study also found that mutation and natural selection is also operating in the "junk DNA" parts of the roundworm, which actually comprises about 75 percent of its genome but traditionally was not thought to play any major role in life and genetic processes. This suggests that these poorly-understood and little appreciated parts of the genome may have important biological roles that are not yet known, Denver said.

Oxidative stress for decades has been suspected as a mechanism for some of the processes that lead to aging and disease, and it has been studied extensively for that reason. This research provides a better fundamental understanding of the genetic impacts of oxidative stress and its role in both genetic disease and evolution, researchers say.

Dee Denver | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>