Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study helps managers identify regions with multiple threat potential, including wildfires

A recent study in the Journal of Forestry now offers managers a tool to help them identify regions exposed to multiple forest threats.

The tool uses a novel 15-mile radius neighborhood analysis to highlight locations where threats are more concentrated relative to other areas, and identifies where multiple threats may intersect. It is a technique that may have never been used before to describe forest threats, according to the researchers.

"Policymakers and managers often rely on maps showing where forest threats are most prevalent; they then assess these threats in relation to the forest resources most valued by the public," explains Jeff Kline, the study's lead author and a research forester at the Forest Service's Pacific Northwest (PNW) Research Station. "Management priorities are then made based on this information. We have devised a way to combine and display forest threat data at its appropriate spatial scale and in a way that transcends political boundaries, using readily available GIS [geographic information system] analytical tools."

"To our knowledge, this is the first time that data describing different threats have been displayed in this manner," adds co-lead and research ecologist, Becky Kerns, "Our approach recognizes that a single point mapped as potentially highly vulnerable to a threat may not be all that important from a regional or national planning perspective. What is important is the concentration of threats within a defined and appropriate spatial scale of interest."

The study, which began in 2008, examines spatial data characterizing wildfire, insects and disease, and urban and exurban development in the northwestern United States. It covered 488,000 square miles in Idaho, Montana, Oregon, Washington, and Wyoming, using a novel 15-mile radius neighborhood analysis to highlight locations where threat of a given disturbance may be more concentrated relative to other areas.

The maps and overlays can help managers locate regions where potential threat combinations are most prevalent. Such assessments can help managers allocate resources toward mitigation efforts and better use shrinking budgets. Federal wildfire suppression expenditures exceeded $1 billion in 2000. They have exceeded that amount nearly every year since, according to the National Interagency Fire Center.

Three key findings characterize the study:

(Note: Maps created by the researchers highlight the intersection of locations where a given disturbance exists at a higher concentration relative to other areas in the five-state study region.)

Although still a very high concern, wildfire potential combined with urban and exurban development can occur on a fairly small geographic area in the northwestern United States, despite widespread concern about their coexistence.

The combination of wildfire with insects and disease affect extensive portions of the forested landscape in the northwestern United States.

The triple threat of wildfire, insects and disease, and urban/exurban development, is not common in the northwestern United States.

The study, Mapping Multiple Forest Threats in the Northwestern United States, was coauthored by PNW Research Station scientists Kline and Kerns; Michelle Day, a Faculty Research Assistant, Oregon State University (OSU); and Roger Hammer, an Associate Professor of Public Policy, at OSU. The USDA Forest Service's Western Wildland Environmental Threat Assessment Center provided funding for the study.

Read it online at
Jeff Kline
(541) 758-7776
Becky Kerns
(541) 750-7497
Roger Hammer
(541) 760-1009
Pacific Northwest Research Station/USDA Forest Service
Oregon State University
News & Information
Media Assistance:
Sherri Richardson-Dodge
(503) 808-2137
Angela Yeager
The Pacific Northwest Research Station is headquartered in Portland, Oregon. It generates and communicates scientific knowledge that helps people make informed choices about natural resources and the environment. The station has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 400 employees.

About the OSU College of Liberal Arts:

The College of Liberal Arts includes the fine and performing arts, humanities and social sciences, making it one of the largest and most diverse colleges at OSU. The college's research and instructional faculty members contribute to the education of all university students and provide national and international leadership, creativity and scholarship in their academic disciplines.

Sherri Richardson-Dodge | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>