Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study helps explain the surprising behavior of tiny 'artificial muscles'

29.04.2010
Using neutron beams and atomic-force microscopes, a team of university researchers working with the National Institute of Standards and Technology (NIST) may have resolved a 10-year-old question about an exotic class of "artificial muscles"—how do they work? Their results* could influence the design of future specialized robotic tools.

These "artificial muscles," first demonstrated in the early 1990s, are "ionic polymer metal composite" (IPMC) actuators, a thin polymer strip plated on both surfaces with conducting metal. The basic unit of the polymer molecule has a charged component attached to it (hence, "ionic"), and it forms a sort of open, permeable structure that can be soaked with water molecules and oppositely charged ions. A modest electric charge across the metalized surfaces will cause the strip to flex in one direction; an alternating charge will make it wiggle like a fish's tail. But why?

"There has been a lot of debate as to the mechanism of actuation in these kinds of systems," says NIST materials scientist Kirt Page. One possibility was that the electric charge on the metalized faces causes the polymer and the free ions to reorient themselves next to the metal, stretching one side and contracting the other. But using a neutron beam at the NIST Center for Neutron Research (NCNR) to watch an IPMC in action as it wiggled back and forth, the team found something very different. Neutrons are particularly good for mapping the locations of water molecules, and they showed that a major force in the actuator is hydraulics. "The water and ions move to one electrode swelling one side and dehydrating the other, causing that to contract, and it bends in that direction," explains Virginia Tech professor Robert Moore, who directed the research. "Then you flip the potential, the ions come screaming back—positive ions again moving towards the new negative electrode—and you can go back and forth."

It happens surprisingly fast, according to Page. "People weren't quite convinced that water could actually move over these distances that quickly," he says, "This paper is the first to show that in fact, this gradient in the water concentration is established almost instantaneously."

A better understanding of just how IPMC actuators work could allow researchers to engineer better materials of this type with improved performance. Current actuators can be small and light-weight, and they can flex over relatively large distances, but the force they can generate is low so these "muscles" are not very strong, according to Moore. They could be used in microfluidic systems as pumps or valves, as tiny robotic grippers in applications where other actuators are impractical or even, says Moore, "as actual artificial muscles in living tissues. I think we're still in the infancy stage of using these. There are still quite a number of details about the mechanism that we need to unlock."

* J.K. Park, P.J. Jones, C. Sahagun, K.A. Page, D.S. Hussey, D.L. Jacobson, S.E. Morgan and R.B. Moore. Electrically stimulated gradients in water and counterion concentrations within electroactive polymer actuators Soft Matter. 2010. 6. 1444�. DOI: 10.1039/b922828d.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>