Georgia Institute of Technology researchers Philip Shapira and Jan Youtie helped answer that question through research presented March 27th at the International Symposium on Assessing the Economic Impact of Nanotechnology held in Washington, D.C. The researchers highlighted the importance of full lifecycle assessments to understand the impacts of nanotechnologies on green economic development in such areas as energy, the environment and safe drinking water.
“Nanotechnology promises to foster green and sustainable growth in many product and process areas,” said Shapira, a professor with Georgia Tech’s School of Public Policy and the Manchester Institute of Innovation Research at the Manchester Business School in the United Kingdom. “Although nanotechnology commercialization is still in its early phases, we need now to get a better sense of what markets will grow and how new nanotechnology products will impact sustainability. This includes balancing gains in efficiency and performance against the net energy, environmental, carbon and other costs associated with the production, use and end-of-life disposal or recycling of nanotechnology products.”
But because nanotechnology underlies many different industries, assessing and forecasting its impact won’t be easy. “Compared to information technology and biotechnology, for example, nanotechnology has more of the characteristics of a general technology such as the development of electric power,” said Youtie, director of policy research services at Georgia Tech’s Enterprise Innovation Institute. “That makes it difficult to analyze the value of products and processes that are enabled by the technology. We hope that our paper will provide background information and help frame the discussion about making those assessments.”
The symposium is sponsored by the Organization for Economic Cooperation and Development and by the U.S. National Nanotechnology Initiative. Support for Georgia Tech research into the societal impacts of nanotechnology has come from the National Science Foundation through the Center for Nanotechnology in Society based at Arizona State University.
For their paper, co-authors Shapira and Youtie examined a subset of green nanotechnologies that aim to enable sustainable energy, improve environmental quality, and provide healthy drinking water for areas of the world that now lack it. They argue that the lifecycle of nanotechnology products must be included in the assessment.
“In examining the economic impact of these green nanotechnologies, we have to consider the lifecycle, which includes such issues as environmental health and safety, as well as the amount of energy required to produce materials such as carbon nanotubes,” said Shapira.
Environmental concerns have been raised about what happens to nanomaterials when they get into water supplies, he noted. In addition, some nanostructures use toxic elements such as cadmium. Energy required for producing nano-enabled products is also an important consideration, though it may be balanced against the energy saved – and pollution reduced – through the use of such products, Shapira said.
Research into these societal issues, which is being conducted in parallel with the research and development of nanotechnology – may allow the resulting nano-enabled products to avoid the kinds of the controversies that have hindered earlier technologies.
“Scientists, policy-makers and other observers have found that some of the promise of prior rounds of technology was limited by not anticipating and considering societal concerns prior to the introduction of new products,” Youtie said. “For nanotechnology, it is vital that these issues are being considered even during the research and development stage, before products hit the market in significant quantities.”
The nanotechnology industry began with large companies that had the resources to invest in research and development. But that is now changing, Youtie said.
“A lot of small companies are involved in novel nanomaterials development,” she said. “Large companies often focus on integrating those nanomaterials into existing products or processes.”
Among the goals of the OECD symposium are development of methodologies and approaches for estimating the impacts of green nanotechnology on jobs and new product sales. Existing forecasts have come largely from proprietary models used by private-sector firms.
“While these private forecasts have high visibility, their information and methods are often proprietary,” Shapira noted. “We also need to develop open and peer-reviewed models in which approaches are transparent and everyone can see the methods and assumptions used.”
In their paper, Youtie and Shapira cite several examples of green nanotechnology, discuss the potential impacts of the technology, and review forecasts that have been made. Examples of green nanotechnology they cite include:
• Nano-enabled solar cells that use lower-cost organic materials, as opposed to current photovoltaic technologies that require rare materials such as platinum;• Technologies used to provide safe drinking water through improved water treatment, desalination and reuse.
John Toon | Newswise Science News
Further information:
http://www.gatech.edu
Further reports about: > NanoTech > Nanotechnology > Shapira > Sustainable bioenergy > drinking water > information technology > nanotechnology products > organic material > piezoelectric material > research and development > safe drinking water
Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde
Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Information Technology
AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Earth Sciences
Complete skin regeneration system of fish unraveled
24.04.2018 | Life Sciences