Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study looks at growth rates of lung cancers found by CT screening

27.03.2012
Growth rates of lung cancers found by annual rounds of computed tomography (CT) screening are important for determining the usefulness and frequency of screening, as well as for determining the treatment.

According to the latest report from the International Early Lung Cancer Action Program (I-ELCAP) published online in the journal Radiology, lung cancers diagnosed in annual repeat rounds of CT screening are similar—both in volume doubling time and cell-type distribution— to those found in clinical practice.

"There was concern that cancers diagnosed in the screening context were somehow different than cancers found in routine practice, that they were not aggressive," said I-ELCAP principal investigator Claudia I. Henschke, Ph.D., M.D., professor of radiology at Mount Sinai School of Medicine in New York, N.Y. "We demonstrate here that they are quite similar."

The researchers reported that growth rates found in cancers detected in repeat rounds of annual CT screening are not significantly different from growth rates reported for cancers diagnosed in clinical practice in the absence of screening. Also, the frequencies of small-cell carcinoma and adenocarcinoma among all lung cancers have been reported to be approximately 20 percent and 50 percent, respectively, in the absence of screening. In repeat rounds of CT screening, these frequencies were nearly identical (19 percent and 50 percent).

Lung cancer is the leading cause of cancer death among men and women. The American Cancer Society estimates that in 2012, approximately 226,160 new cases of lung cancer will be diagnosed in the U.S. and 160,340 Americans will die from the disease.

CT screening has been found effective in detecting lung cancer at its earliest, most curable stage.

"This study shows that the cell types of cancer diagnosed in annual rounds of screening, as well as their growth rates, are quite similar to those that are found in clinical practice where it is well understood that lung cancer is highly lethal," Dr. Henschke said. The first, or baseline, round of screening for any cancer detects a higher proportion of slower-growing cancers than those detected in clinical practice, she noted. The subsequent, repeat rounds of screening, however, reflect what is found in clinical practice.

The study found that there is a difference in the growth rates of cancers in solid and sub-solid lesions and that the sub-solid ones tend to be less aggressive than solid ones.

"This suggests that a less aggressive approach is indicated for both diagnosis and treatment of sub-solid lesions," Dr. Henschke said.

The researchers reviewed results from the I-ELCAP database for 1993 to 2009, consisting of men and women at risk for lung cancer who underwent annual repeat rounds of CT screening. The research team identified 111 instances of first primary lung cancer diagnosed either through screening or between rounds after a negative result of the prior screening seven to 18 months earlier. Of the 111 cancers identified, 88 were clinical Stage I. The investigators then analyzed volume doubling time and cell-type distribution.

The results showed that the median volume doubling time was 98 days. Most of the cancers, 99 of the 111, manifested as solid nodules, while only 12 of the cancers manifested as sub-solid nodules. Solid nodule cancers had significantly faster volume doubling times than sub-solid nodule cancers. According to Dr. Henschke, identifying the volume doubling times for specific lesion types may lead to more tailored treatment for the patient.

Volume doubling times for lung cancers diagnosed in clinical practice in the absence of screening have been reported to range from 20 to 360 days. A recent study, based on a systematic medical literature review, reported a mean volume doubling time of 135 days for non-small-cell lung cancers diagnosed in the absence of screening.

Dr. Henschke recommends that people at high risk for lung cancer have a discussion with their health care provider to discuss the benefits and risks of screening so as to make an informed decision about enrolling in a screening program.

"Lung Cancers Diagnosed by Annual CT Screening: Volume Doubling Times." Collaborating with Dr. Henschke were David F. Yankelevitz, M.D., Rowena Yip, M.P.H., Anthony P. Reeves, Ph.D., Ali Farooqi, M.D., Dongming Xu, M.D., James P. Smith, M.D., Daniel M. Libby, M.D., Mark W. Pasmantier, M.D., and Olli S. Miettinen, M.D., Ph.D., as the writing committee for the I-ELCAP Investigators.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 48,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on CT and lung cancer, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://radiology.rsna.org

Further reports about: CT screening Cancer I-ELCAP Radiological Society cell type doubling time lung cancer

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>