Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study could mean greater anticipated global warming

23.11.2010
Current state-of-the-art global climate models predict substantial warming in response to increases in greenhouse gases such as carbon dioxide. The models, though, disagree widely in the magnitude of the warming we can expect.

The disagreement among models is mainly due to the different representation of clouds. Some models predict that global mean cloud cover will increase in a warmer climate and the increased reflection of solar radiation will limit the predicted global warming.

Other models predict reduced cloudiness and magnified warming. In a paper that has just appeared in the Journal of Climate, researchers from the University of Hawaii Manoa (UHM) have assessed the performance of current global models in simulating clouds and have presented a new approach to determining the expected cloud feedbacks in a warmer climate.

Lead author Axel Lauer at the International Pacific Research Center (IPRC) at UHM notes, "All the global climate models we analyzed have serious deficiencies in simulating the properties of clouds in present-day climate. It is unfortunate that the global models' greatest weakness may be in the one aspect that is most critical for predicting the magnitude of global warming."

To study the clouds, the researchers applied a model representing only a limited region of the atmosphere over the eastern Pacific Ocean and adjacent land areas. The clouds in this region are known to greatly influence present climate, yet current global models do poorly in representing them. The regional model, developed at the IPRC, successfully simulates key features of the region's present-day cloud fields, including the observed response of clouds to El Nino. Having evaluated the model's simulation of present-day conditions, the researchers examined the response of simulated clouds in a warmer climate such as it might be in 100 years from now. The tendency for clouds to thin and cloud cover to reduce was more pronounced in this model than in any of the current global models.

Co-author Kevin Hamilton concludes, "If our model results prove to be representative of the real global climate, then climate is actually more sensitive to perturbations by greenhouse gases than current global models predict, and even the highest warming predictions would underestimate the real change we could see."

This research was supported by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), by NASA through Grant NNX07AG53G, and by NOAA through Grant NA09OAR4320075, which sponsor research at the International Pacific Research Center. This research was also supported by NOAA/CPPA Grant NA07OAR4310257 and DOE Regional and Global Climate Modeling (RCGM) Program Grant ER64840.

Citation: Lauer, A., K. Hamilton, Y. Wang, V. T. Phillips, and R. Bennartz (2010), The Impact of Global Warming on Marine Boundary Layer Clouds over the Eastern Pacific - A Regional Model Study, Journal of Climate, Vol. 23, No. 21, 5844�.

Researcher Contacts: Axel Lauer (808) 956-3631; email: lauera@hawaii.edu

Kevin Hamilton (808) 956-8327; email: kph@hawaii.edu

IPRC Media Contact: Gisela Speidel, (808) 956-9252; email: gspeidel@hawaii.edu IPRC/SOEST, University of Hawaii at Manoa, 1680 East-West Rd., POST Building 401, Honolulu, HI 96822.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>