Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study first to use brain scans to forecast early reading difficulties

16.09.2014

Brain's white matter highly predictive of reading acquisition beyond effects of genetic predisposition

UC San Francisco researchers have used brain scans to predict how young children learn to read, giving clinicians a possible tool to spot children with dyslexia and other reading difficulties before they experience reading challenges.

In the United States, children usually learn to read for the first time in kindergarten and become proficient readers by third grade, according to the authors. In the study, researchers examined brain scans of 38 kindergarteners as they were learning to read formally at school and tracked their white matter development until third grade. The brain's white matter is essential for perceiving, thinking and learning.

The researchers found that the developmental course of the children's white matter volume predicted the kindergarteners' abilities to read.

... more about:
»Brain »Development »MS »UCSF »cognitive »dyslexia »scans

"We show that white matter development during a critical period in a child's life, when they start school and learn to read for the very first time, predicts how well the child ends up reading," said Fumiko Hoeft, MD, PhD, senior author and an associate professor of child and adolescent psychiatry at UCSF, and member of the UCSF Dyslexia Center.

The research is published online in Psychological Science.

Doctors commonly use behavioral measures of reading readiness for assessments of ability. Other measures such as cognitive (i.e. IQ) ability, early linguistic skills, measures of the environment such as socio-economic status, and whether there is a family member with reading problems or dyslexia are all common early factors used to assess risk of developing reading difficulties.

"What was intriguing in this study was that brain development in regions important to reading predicted above and beyond all of these measures," said Hoeft.

The researchers removed the effects of these commonly used assessments when doing the statistical analyses in order to assess how the white matter directly predicted future reading ability. They found that left hemisphere white matter in the temporo-parietal region just behind and above the left ear -- thought to be important for language, reading and speech -- was highly predictive of reading acquisition beyond effects of genetic predisposition, cognitive abilities, and environment at the outset of kindergarten. Brain scans improved prediction accuracy by 60 percent better at predicting reading difficulties than the compared to traditional assessments alone.

"Early identification and interventions are extremely important in children with dyslexia as well as most neurodevelopmental disorders," said Hoeft. "Accumulation of research evidence such as ours may one day help us identify kids who might be at risk for dyslexia, rather than waiting for children to become poor readers and experience failure."

According to the National Institute of Child and Human Development, as many as 15 percent of Americans have major trouble reading.

"Examining developmental changes in the brain over a critical period of reading appears to be a unique sensitive measure of variation and may add insight to our understanding of reading development in ways that brain data from one time point, and behavioral and environmental measures, cannot," said Chelsea Myers, BS, lead author and lab manager in UCSF's Laboratory for Educational NeuroScience. "The hope is that understanding each child's neurocognitive profiles will help educators provide targeted and personalized education and intervention, particularly in those with special needs."

###

Co-authors include Maaike Vandermosten, PhD of KU Leuven; Emily Farris, PhD of University of Texas Permian Basin; Roeland Hancock, PhD, Paul Gimenez, BA, Brandi Casto, MS, Miroslav Drahos, MS, Mandeep Tumber, MS, and Robert Hendren, DO, all of the Department of Psychiatry at UCSF; Jessica Black, PhD of School of Social Work at Boston College; and Charles Hulme, DPhil of Department of Psychology at University College London.

The study was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (K23 HD054720), Flora Family Foundation, UCSF Catalyst Award, UCSF Resource Allocation Program, Brain & Behavior Research Foundation Young Investigator Award, Stanford University Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award and the Extraordinary Brain Series of the Dyslexia Foundation.

UC San Francisco (UCSF), now celebrating the 150th anniversary of its founding, is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Juliana Bunim | Eurek Alert!

Further reports about: Brain Development MS UCSF cognitive dyslexia scans

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>