Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds novel worm community affecting methane release in ocean

13.08.2013
Scientists have discovered a super-charged methane seep in the ocean off New Zealand that has created its own unique food web, resulting in much more methane escaping from the ocean floor into the water column.

Most of that methane, a greenhouse gas 23 times more potent than carbon dioxide at warming our atmosphere, is likely consumed by biological activity in the water, the scientists say.

Thus it will not make it into the atmosphere, where it could exacerbate global warming. However, the discovery does highlight scientists’ limited understanding of the global methane cycle – and specifically the biological interactions that create the stability of the ocean system.

Results of the study, which was funded primarily by the National Oceanic and Atmospheric Administration and the Federal Ministry of Education and Research in Germany, have just been published online in the journal Limnology and Oceanography.

“We didn’t discover any major ‘burps’ of methane escaping into the atmosphere,” said Andrew R. Thurber, a post-doctoral researcher at Oregon State University and lead author on the study. “However, some of the methane seeps are releasing hundreds of times the amounts of methane we typically see in other locations, so the structure and interactions of this unique habitat certainly got our attention.

“What made this discovery most exciting was that it is one of the first and best examples of a direct link between a food web and the dynamics that control greenhouse gas emissions from the ocean,” Thurber added.

The scientists first discovered this new series of methane seeps in 600 to 1,200 meters of water off North Island of New Zealand in 2006 and 2007. The amount of methane emitted from the seeps was surprisingly high, fueling a unique habitat dominated by polychaetes, or worms, from the family Ampharetidae.

"They were so abundant that the sediment was black from their dense tubes,” Thurber pointed out.

Those tubes, or tunnels in the sediment, are critical, the researchers say. By burrowing into the sediment, the worms essentially created tens of thousands of new conduits for methane trapped below the surface to escape from the sediments. Bacteria consumes much of the methane, converting it to carbon dioxide, and the worms feast on the enriched bacteria – bolstering their healthy population and leading to more tunnels and subsequently, greater methane release.

The researchers say that there is one more critical element necessary for the creation of this unique habitat – oxygen-rich waters near the seafloor that the bacteria harness to consume the methane efficiently. The oxygen also enables the worms to breathe better and in turn consume the bacteria at a faster rate.

“In essence, the worms are eating so much microbial biomass that they are shifting the dynamics of the sediment microbial community to an oxygen- and methane-fueled habitat – and the worms’ movements and grazing are likely causing the microbial populations to eat methane faster,” said Thurber, who works in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “That process, however, also leads to more worms that build more conduits in the sediments, and this can result in the release of additional methane.”

Methane seeps and worm communities are present in many other areas around the world, the researchers point out, including the Pacific Northwest. However, the deep water in many of these locations has low levels of oxygen, which the scientists think is a factor that constrains the growth of the worm populations. In contrast, the study sites off New Zealand are bathed in cold, oxygen-rich water from the Southern Ocean that fuels these unique habitats.

“The large amounts of methane consumed by bacteria have kept it from reaching the surface,” Thurber said. “Those bacteria essentially are putting the pin back in the methane grenade. But we don’t know if the worms ultimately may overgraze the bacteria and overtax the system. It’s something we haven’t really seen before.”

Also participating in the study were scientists from Scripps Institution of Oceanography, the National Institute of Water and Atmospheric Research in Wellington, New Zealand, and the Helmholtz Centre for Ocean Research in Germany.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

MEDIA CONTACT:
Mark Floyd,
541-737-0788
SOURCE:
Andrew Thurber, 541-737-8251; athurber@coas.oregonstate.edu

Andrew Thurber | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>