Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds why some women are sub-fertile with a poor response to ovarian stimulating hormones

29.06.2010
Researchers have discovered that some women carry a genetic variation that makes them sub-fertile and less likely to respond to ovarian stimulating hormones during fertility treatment. The discovery opens the way to identifying these women and devising personalised fertility treatments that could bypass the problem caused by the genetic abnormality.

Dr Maria Lalioti told the 26th annual meeting of the European Society of Human Reproduction and Embryology in Rome today (Tuesday) that she and her colleagues from the Yale University Medical School, New Haven (USA), had found that some women had an abnormal hormone receptor on cells surrounding oocytes (eggs). This abnormal receptor impaired the function of normal receptors that were also present and resulted in the affected women responding less well to Follicle Stimulating Hormone (FSH), which is given to women during fertility treatment to stimulate the production of more than one oocyte.

Dr Lalioti, as assistant professor in the Department of Obstetrics Gynecology and Reproductive Sciences at Yale, said: "When a woman undergoes in vitro fertilisation, she receives medication called Follicle Stimulating Hormone to produce more than one oocyte, which is the normal production each month. Cells called granulosa cells, which surround the oocyte, receive the FSH; these cells excrete other factors that 'feed' the oocyte. The granulosa cells have proteins present on their surface called FSH receptors (or FSHR) and it is these proteins that stick to the FSH and then carry signals into the cell's interior. When we looked at a portion of these granulosa cells in the laboratory we saw that in some women, who produced very few oocytes, there were some receptors that lacked a piece of the protein, although there were still other, normal FSHR in the women's cells."

The abnormal FSHR contained a deleted sequence of protein called exon 2 that is an important part of the protein that binds the FSH; FSHR with the exon 2 deletion was only detected in women younger than 35 who had a poor response to FSH and yielded less than four oocytes in a follicle stimulating cycle.

"We produced the normal and abnormal protein in the lab in a different type of cell called HEK293 (Human Embryonic Kidney) which is a common cell type used in the labs to examine properties of proteins. We saw that when the abnormal receptor was present, the normal one could no longer work as well as it does when it is the only protein present," explained Dr Lalioti. "The receptor is normally present on the cell surface in order to meet and bind FSH, and it needs to go through a number of cellular checkpoints inside the cell that assure the quality of the protein presented on the surface. We saw that the abnormal receptor remains longer in one of these checkpoint compartments, indicating that the cell has detected a problem and is trying to correct it. In this way the abnormal FSHR can contribute to an abnormally low response to stimulation in certain women undergoing IVF."

Dr Lalioti's discovery of the mechanism behind why some young women have a poor response to FSH has important implications for future research and treatment of these women. "The importance of this finding is that it creates a link between genetic variation and sub-fertility. These women have a normal menstrual cycle and they may present to the fertility centre as patients with unexplained infertility, before their first IVF cycle that would reveal an ovarian stimulation defect," she said.

"Our finding explains why these women have a lower response to FSH. Currently, FSH is the only medication used to stimulate ovarian response, but once other medications are available that can bypass the receptor for FSH, they can be tested on these women. Also, at present we cannot predict if the women would profit from having higher doses of medication, and, in fact, some preliminary data from other groups show the opposite: that lower FSH may be more beneficial."

Future research will examine the FSHR signalling mechanisms within the cell and investigate how newly developed drugs might bypass the problems created by the genetic abnormality. "In the future, this could lead to personalised treatments for a sub-group of patients," said Dr Lalioti.

It is not known how many women have this particular genetic variation. Dr Lalioti found it in two out of five women that she tested. "These patients are hard to recruit because most patients with a low response to FSH do not complete the IVF cycle for financial reasons," she said. "We need to recruit more patients to discover how common it is." She and her colleagues will need a year to recruit and test more women, to set up collaborations with more fertility centres and to start to test new drugs that could promote oocyte production more effectively in these women.

Emma Mason | EurekAlert!
Further information:
http://www.eshre.eu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>