Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Widespread Stream Biodiversity Declines at Low Levels of Urban Development

14.06.2011
A new study from biology researchers at Baylor University and the University of Maryland-Baltimore has found that there are consistent and widespread declines in stream biodiversity at lower levels of urban development more damaging than what was previously believed.

The study found that aquatic life actually shows significant loss of biodiversity with less than two percent of developed land in a watershed. This is much less that what a decade-old analysis widely cited by environmental policymakers suggests that it takes up to 15 percent of solid surfaces like roads or parking lots, or 20 to 30 percent developed land in a given area before local water systems no longer sustain normal aquatic life.

“The findings are alarming and imply that water quality in streams is degraded rapidly with relatively low levels of development, which clearly has significant implications to the organisms that live in these streams,” said study co-author Dr. Ryan King, associate professor of biology at Baylor. “Perhaps of even greater concern is that the decline of stream-dwelling animals implies that there is chemical pollution that could also be detrimental to human health via groundwater and downstream drinking water supplies. It is unlikely that it's just the rapid runoff of water from the impervious cover that is causing the loss of biodiversity, but more likely that chemical pollution is also responsible.”

The researchers used samples from about 2,000 streams around Maryland and compared satellite imagery and land cover datasets to analyze how the water ecosystem and biodiversity responded to various levels of impervious cover, which are areas where infiltration of water into the underlying soil is prevented. Roads, parking lots and buildings account for the majority of impervious cover.

Published research in recent years has consistently shown a strong relationship between the percentage of impervious cover in a watershed and the health of the receiving stream. Scientists generally agree that stream degradation consistently occurs at relatively low levels of imperviousness, such as 10 to 20 percent. However, when King and his research team applied a new statistical analysis method that they created called the Threshold Indicator Taxa Analysis (TITAN), it showed biodiversity loss at much lower development levels in the study area. In fact, the analysis showed that approximately 80 percent of the biodiversity loss came between .5 and two percent of impervious cover, and the remaining 20 percent of loss came between two and 25 percent.

“This new statistical analysis method is more precise than current methods and when we applied it to real world environments, it revealed a dramatically lower ecological ‘tipping point’ at which species are threatened,” King said. “The implications of these findings are very important in water management strategies.”

The study appears on-line in the journal Ecological Applications.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>