Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds soybean compounds enhances effects of cancer radiotherapy

A Wayne State University researcher has shown that compounds found in soybeans can make radiation treatment of lung cancer tumors more effective while helping to preserve normal tissue.

A team led by Gilda Hillman, Ph.D., professor of radiation oncology at Wayne State University's School of Medicine and the Barbara Ann Karmanos Cancer Institute, had shown previously that soy isoflavones, a natural, nontoxic component of soybeans, increase the ability of radiation to kill cancer cells in prostate tumors by blocking DNA repair mechanisms and molecular survival pathways, which are turned on by the cancer cells to survive the damage radiation causes.

At the same time, isoflavones act to reduce damage caused by radiation to surrounding cells of normal, noncancerous tissue. This was shown in a clinical trial conducted at WSU and Karmanos for prostate cancer patients treated with radiotherapy and soy tablets.

In results published in the journal Nutrition and Cancer in 2010, those patients experienced reduced radiation toxicity to surrounding organs; fewer problems with incontinence and diarrhea; and better sexual organ function. Hillman's preclinical studies in the prostate tumor model led to the design of that clinical trial.

Soy isoflavones can make cancer cells more vulnerable to ionizing radiation by inhibiting survival pathways that are activated by radiation in cancer cells but not in normal cells. In normal tissues, soy isoflavones also can act as antioxidants, protecting those tissues from radiation-induced toxicity.

During the past year, Hillman's team achieved similar results in non-small cell lung cancer cells in vitro. She recently received a two-year, $347,000 grant from the National Cancer Institute, part of the National Institutes of Health, to investigate whether those results also proved true for non-small cell lung tumors in mice, and has found that they do. Her findings, which she called "substantial" and "very promising," appear in the November 2011 edition of the journal Radiotherapy and Oncology.

Hillman emphasized that soy supplements alone are not a substitute for conventional cancer treatment, and that doses of soy isoflavones must be medically administered in combination with conventional cancer treatments to have the desired effects.

"Preliminary studies indicate that soy could cause radioprotection," she said. "It is important to show what is happening in the lung tissue."

The next step, she said, is to evaluate the effects of soy isoflavones in mouse lung tumor models to determine the conditions that will maximize the tumor-killing and normal tissue-protecting effects during radiation therapy.

"If we succeed in addressing preclinical issues in the mouse lung cancer model showing the benefits of this combined treatment, we could design clinical protocols for non-small cell lung cancer to improve the radiotherapy of lung cancer," Hillman said. "We also could improve the secondary effects of radiation, for example, improving the level of breathing in the lungs."

Once protocols are developed, she said, clinicians can begin using soy isoflavones combined with radiation therapy in humans, a process they believe will yield both therapeutic and economic benefits.

"In contrast to drugs, soy is very, very safe," Hillman said. "It's also readily available, and it's cheap.

"The excitement here is that if we can protect the normal tissue from radiation effects and improve the quality of life for patients who receive radiation therapy, we will have achieved an important goal."

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit

Julie O'Connor | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>