Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds possible source of beta cell destruction that leads to Type 1 diabetes

05.02.2010
Could hold the key to reversing the disease

Doctors at Eastern Virginia Medical School's Strelitz Diabetes Center have been stalking the culprit responsible for Type 1 diabetes. Now, they are one step closer.

Members of a research team at the center, led by Jerry Nadler, MD, professor and chair of internal medicine and director of the center, have been studying the role of the enzyme 12-Lipoxygenase (12-LO) in the development of Type 1 diabetes. They hope that targeting this enzyme will hold the key to a cure.

Dr. Nadler and several research colleagues in the EVMS Department of Internal Medicine, including Kaiwen Ma, PhD, research instructor; Swarup K. Chakrabarti, PhD, research assistant professor; and David A. Taylor-Fishwick, PhD, associate professor, recently published their findings in the February issue of The Journal of Clinical Endocrinology and Metabolism.

Type 1 diabetes is a chronic condition that develops when the pancreas stops generating enough insulin to maintain normal levels of glucose (sugar) in the blood. Insulin moves sugar from the bloodstream to cells so that it can be used to generate energy. In Type 1 diabetes, a person's immune system attacks the insulin-producing beta cells, found only in the pancreas. When the beta cells die, the body no longer can produce enough insulin to regulate blood-glucose levels, and this can lead to serious health complications, even death, without treatment.

It is generally understood that inflammation plays a vital role in beta-cell destruction. But the precise factors are not well known. A protein-based enzyme found in beta cells, 12-LO produces specific lipids that cause inflammation and can lead to the death of beta cells in laboratory models. In fact, EVMS researchers have demonstrated that deleting the gene that produces 12-LO prevents the development of Type 1 diabetes in mice.

The challenge has been to validate that 12-LO and its pro-inflammatory lipid products have a role in human diabetes. Gaining access to human beta cells can be difficult, but EVMS is among a limited number of research groups that can receive human islets — the region of the pancreas that contains beta cells — from individuals who have donated their bodies to science through the Juvenile Diabetes Research Foundation Islet Resource Center Consortium Dr. Nadler explains.

Thanks to that resource, the EVMS team has confirmed that 12-LO is indeed found in human islets, and in humans, like in mice, its pro-inflammatory lipid products can lead to lower insulin production and beta cell death.

"We've now confirmed that 12-LO is a relevant target in humans, particularly in the pancreas, and will help lead to new therapies," Dr. Ma says.

"That's why these new findings are so important," Dr. Chakrabarti says. "The next step will be to develop a drug that targets 12-LO and combine that with cell regeneration."

"We are currently working with investigators in California and the National Institutes of Health to identify ideal medications that would target 12-LO as a new treatment to halt immune damage to human insulin-producing cells," Dr. Taylor-Fishwick says.

About EVMS:

Eastern Virginia Medical School (www.evms.edu) was established in 1973 to provide better health-care options for Hampton Roads. The EVMS focus on teaching, discovering and caring ensures high-quality medical education for aspiring physicians and health-care professionals; the advancement of innovative medical research; and high-quality, patient-centered care.

Jina Gaines | EurekAlert!
Further information:
http://www.evms.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>