Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds possible source of beta cell destruction that leads to Type 1 diabetes

05.02.2010
Could hold the key to reversing the disease

Doctors at Eastern Virginia Medical School's Strelitz Diabetes Center have been stalking the culprit responsible for Type 1 diabetes. Now, they are one step closer.

Members of a research team at the center, led by Jerry Nadler, MD, professor and chair of internal medicine and director of the center, have been studying the role of the enzyme 12-Lipoxygenase (12-LO) in the development of Type 1 diabetes. They hope that targeting this enzyme will hold the key to a cure.

Dr. Nadler and several research colleagues in the EVMS Department of Internal Medicine, including Kaiwen Ma, PhD, research instructor; Swarup K. Chakrabarti, PhD, research assistant professor; and David A. Taylor-Fishwick, PhD, associate professor, recently published their findings in the February issue of The Journal of Clinical Endocrinology and Metabolism.

Type 1 diabetes is a chronic condition that develops when the pancreas stops generating enough insulin to maintain normal levels of glucose (sugar) in the blood. Insulin moves sugar from the bloodstream to cells so that it can be used to generate energy. In Type 1 diabetes, a person's immune system attacks the insulin-producing beta cells, found only in the pancreas. When the beta cells die, the body no longer can produce enough insulin to regulate blood-glucose levels, and this can lead to serious health complications, even death, without treatment.

It is generally understood that inflammation plays a vital role in beta-cell destruction. But the precise factors are not well known. A protein-based enzyme found in beta cells, 12-LO produces specific lipids that cause inflammation and can lead to the death of beta cells in laboratory models. In fact, EVMS researchers have demonstrated that deleting the gene that produces 12-LO prevents the development of Type 1 diabetes in mice.

The challenge has been to validate that 12-LO and its pro-inflammatory lipid products have a role in human diabetes. Gaining access to human beta cells can be difficult, but EVMS is among a limited number of research groups that can receive human islets — the region of the pancreas that contains beta cells — from individuals who have donated their bodies to science through the Juvenile Diabetes Research Foundation Islet Resource Center Consortium Dr. Nadler explains.

Thanks to that resource, the EVMS team has confirmed that 12-LO is indeed found in human islets, and in humans, like in mice, its pro-inflammatory lipid products can lead to lower insulin production and beta cell death.

"We've now confirmed that 12-LO is a relevant target in humans, particularly in the pancreas, and will help lead to new therapies," Dr. Ma says.

"That's why these new findings are so important," Dr. Chakrabarti says. "The next step will be to develop a drug that targets 12-LO and combine that with cell regeneration."

"We are currently working with investigators in California and the National Institutes of Health to identify ideal medications that would target 12-LO as a new treatment to halt immune damage to human insulin-producing cells," Dr. Taylor-Fishwick says.

About EVMS:

Eastern Virginia Medical School (www.evms.edu) was established in 1973 to provide better health-care options for Hampton Roads. The EVMS focus on teaching, discovering and caring ensures high-quality medical education for aspiring physicians and health-care professionals; the advancement of innovative medical research; and high-quality, patient-centered care.

Jina Gaines | EurekAlert!
Further information:
http://www.evms.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>