Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds promise in combined transplant/vaccine therapy for high-risk leukemia

26.08.2009
Two of the most powerful approaches to cancer treatment -- a stem cell transplant and an immune system-stimulating vaccine -- appear to reinforce each other in patients with an aggressive, hard-to-control form of leukemia, Dana-Farber Cancer Institute scientists have found.

In a study to be published in the online early edition of the Proceedings of the National Academy of Sciences the week of Aug. 24, the researchers report that patients with high-risk acute myeloid leukemia (AML) or advanced myelodysplasia (a blood disorder) who received a cancer vaccine shortly after a stem cell transplant not only had few complications but also mounted a strong immune system attack on the disease.

Particularly encouraging was the fact that rates of graft-versus-host disease (GVHD), a potentially severe aftereffect of immune system-based therapies, were no higher than with stem cell transplants alone.

The key to the technique's success was the timing of the vaccine, explained the study's co-senior author, Glenn Dranoff, MD, of Dana-Farber. "In previous studies that have combined stem cell transplantation with a cancer vaccine, the vaccine wasn't given until a significant amount of time after the transplant," said Dranoff. "In research with animal models, we found the approach works best if the vaccine follows the transplant by just a few weeks."

The study involved 28 patients with advanced myelodysplasia or high-risk AML ("high-risk" meaning their disease did not respond to standard chemotherapy treatment). Twenty-four underwent a transplant of hematopoietic (blood-making) stem cells: after receiving chemotherapy to reduce the number of diseased blood-forming cells in their bone marrow, they received an infusion of healthy stem cells from a matched donor. The transplanted cells settled in the bone marrow, where they began to regenerate patients' blood supply, including white blood cells and other agents that constitute the immune system.

Between 30 and 45 days after transplant, 15 of the patients began receiving a cancer vaccine. The vaccine was made by surgically removing cancerous or myelodysplasic tissue from patients and genetically altering the diseased cells so they would produce a protein called GM-CSF. When these modified cells were injected into patients as a vaccine, the cells began pumping out GM-CSF. Just as a matador's cape provokes the bull to attack, GM-CSF spurred the immune system to attack cancer cells throughout the body.

Ten of the participating patients completed the full course of six vaccinations (the others had to drop out of the trial because of rapidly advancing disease). All of the patients who received even a single vaccination had a better survival rate than people with these diseases customarily have. Of the 10 who received the entire vaccine course, nine are alive and in full remission up to four years after treatment.

Although the only way to determine whether the combined transplant/vaccine approach is superior to transplant alone is to compare them head-to-head in a clinical trial, the results of the current study are highly encouraging, said co-senior author Robert Soiffer, MD, of Dana-Farber. Historically, only about 20 percent of similar high-risk AML and myelodysplasia patients who receive a transplant survive for at least two years.

Researchers believe the new approach takes advantage of the unique conditions that exist within the body shortly after a stem cell transplant. "It usually takes several months following a transplant for the new tissue to take root in the bone marrow and fully reconstitute the blood supply," said Soiffer, who is also a professor of medicine at Harvard Medical School. "The period while that reconstitution is taking place is special. The initial chemotherapy has depleted much of the patient's immune system, and the body is trying to restore its previous state of function. That 'unsettled' condition seems to be a very opportune moment for an intervention such as a cancer vaccine."

One of the pleasant surprises of the study was that GVHD rates among study participants varied little from those of transplant-only patients. As part of the transplant process, patients receive Tracrolimus, a medication that inhibits the newly implanted tissue from launching an immune system attack on the recipient's body. Researchers speculated that the drug might dampen the vaccine's ability to spark an immune response against diseased cells, but that turned out not to be a problem.

Researchers also have strong evidence that the transplant and vaccine complement each other in fighting AML and myelodysplasia cells. By analyzing the blood of patients who received the combined therapy, investigators found a sharp drop in a telltale protein, indicating cancer cells were being killed by the immune response triggered by the vaccine.

The study, though small in size, provides a solid indication that the future of cancer therapy may involve combinations of treatments -- such as chemotherapy, radiation, and surgery -- that directly kill cancer cells, and other agents -- such as cancer vaccines – that mobilize the immune system against the malignancy. "Where we currently have effective cancer therapies, they almost always involve the combination of treating the disease and the host," said Dranoff, who is also an associate professor of medicine at Harvard Medical School. "Chemotherapy and 'smart' drugs have a crucial role to play, but when cancer cells find a way around them, immune-based treatments offer another line of defense."

The study's lead author is Vincent Ho, MD, of Dana-Farber.

Other contributors include: Matthew Vanneman, Haesook Kim, PhD, Tetsuro Sasada, MD, PhD, Yoon Joong Kang, PhD, Mildred Pasek, RN, Corey Cutler, MD, John Koreth, DPhil, Edwin Alyea, MD, Stefanie Sarantopoulos, MD, Joseph Antin, MD, Jerome Ritz, MD, and Christine Canning, PA-C, of Dana-Farber; Jeffrey Kutok, MD, PhD, of Brigham and Women's Hospital; and Martin Mihm, MD, of Massachusetts General Hospital.

Support for the study was provided by the Ted and Eileen Pasquarello Research Fund, the Leukemia and Lymphoma Society, the National Institutes of Health, and Bayer Pharmaceuticals.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>