Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds potential to match tumors with known cancer drugs

Mapping the landscape of kinases could aid in new world of personalized cancer treatment

When it comes to gene sequencing and personalized medicine for cancer, spotting an aberrant kinase is a home run. The proteins are relatively easy to target with drugs and plenty of kinase inhibitors already exist.

Now in a new study, University of Michigan Comprehensive Cancer Center researchers assess the complete landscape of a cancer's "kinome" expression and determine which kinases are acting up in a particular tumor. They go on to show that those particular kinases can be targeted with drugs – potentially combining multiple drugs to target multiple kinases.

"We have a small but effective inventory of 'druggable' mutations that we know play a role in cancer. As we are doing more sequencing, we're coming to realize just how small that inventory is. On the one hand, it's a limitation. On the other hand, there are numerous oncogenic kinases, and there are a lot of kinase inhibitors. Our goal is to determine how to match more of these therapies with the right patients," says senior study author Chandan Kumar-Sinha, Ph.D., research assistant professor at the Michigan Center for Translational Pathology.

The researchers looked at RNA sequencing data from 482 samples of both cancerous and non-cancerous tissue and identified the most highly expressed kinases in individual breast cancer and pancreatic cancer samples. They found certain common themes.

"A lot of samples showed one or two kinases that showed an outstandingly high 'outlier' expression," says Kumar-Sinha. It wasn't that the researchers always found a mutation – just that one or more kinases were expressed at a far higher level than all other kinases.

"We don't always know what's causing it to be overexpressed. But since it's there, we know that somehow the high expression of oncogenic kinases is advantageous to the cancer, and so we can therapeutically exploit that dependency," Kumar-Sinha says.

Results of the study appear online in the journal Cancer Discovery.

In breast cancer, the researchers spotted outlier expression of ERBB2 kinase in HER2-positive tumors, which would be expected. HER2-positive tumors can be treated with Herceptin. But they also found another kinase, called FGFR4 – and they found that adding a drug that blocks FGFR4, in combination with Herceptin, improved the anti-cancer effect. This was done only in cells in the laboratory, but the FGFR4-inhibitor continued to be effective in cells even after they became resistant to Herceptin.

In the pancreatic cancer samples, the researchers found several different kinases that have drugs that work against them, including MET, AKT and PLK. Pancreatic cancer is one of the most deadly types of cancer, often diagnosed in its late stages when treatments are not very effective. The main driver of pancreatic cancer, a mutation in a gene called KRAS, has proven difficult to target with treatments.

In the lab, researchers blocked the outlier kinases and found it had an effect against the cancer cells. They then blocked KRAS – something that can be done in the lab but has not been achieved in patients with pancreatic cancer – and found an even larger effect.

"If in the future we could target KRAS in patients and also hit the outlier kinases, it could have a huge impact on treatment of pancreatic cancer," Kumar-Sinha says.

These findings must still be tested in patients, but researchers are hopeful that targeting specific kinases expressed in an individual patient's tumor could make a difference.

The U-M Comprehensive Cancer Center is currently using gene sequencing techniques to help match advanced cancer patients with potential clinical trial opportunities based on the make-up of their tumor.

"We hope kinases will represent another available avenue with whole genome sequencing. If we can identify rational multiple targets for treatment, it's more effective. This gets us one of those targets," Kumar-Sinha says.

Additional authors: Vishal Kothari, Iris Wei, Sunita Shankar, Shanker Kalyana-Sundaram, Lidong Wang, Linda W. Ma, Pankaj Vats, Catherine S. Grasso, Dan R. Robinson, Yi-Mi Wu, Xuhong Cao, Diane M. Simeone, Arul M. Chinnaiyan, all from U-M

Funding: National Cancer Institute grants 5-R21-CA-155992-02, 2T32CA009672-21, R01CA131045-01, P50CA130810-1A; Department of Defense Era of Hope grant BC075023; Rich Rogel Fund for Pancreatic Cancer Research; Doris Duke Charitable Foundation; American Cancer Society; U-M's A. Alfred Taubman Research Institute; U-M GI SPORE

Disclosure: None

Reference: Cancer Discovery, "Outlier Kinase Expression by RNA Sequencing as Targets for Precision Therapy," published online Feb. 5, 2013, doi:10.1158/2159-8290.CD-12-0336

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center,
Clinical trials at U-M,

Nicole Fawcett | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>