Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds physical link to strange electronic behavior

01.08.2014

Neutron measurements offer new clues about iron-based superconductor

Scientists have new clues this week about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide. A Rice University-led team of U.S., German and Chinese physicists has published the first evidence, based on sophisticated neutron measurements, of a link between magnetic properties and the material's tendency, at sufficiently low temperatures, to become a better conductor of electricity in some directions than in others.

Anisotropic Infographic

Inelastic neutron scattering experiments revealed a temporary, collective anisotropic order prior to the onset of magnetism in a temperature interval where anisotropic resistance had previously been measured.

Credit: Tanyia Johnson/Rice University

The odd behavior, which has been documented in a number of materials, occurs at temperatures slightly higher than those needed to bring about magnetism; magnetism is believed to be essential for the origin of high-temperature superconductivity. In a new study appearing online this week in the journal Science Express, scientists at Rice, the Chinese Academy of Sciences in Beijing and Germany's Technische Universität München (TUM) offer the first evidence that the directionally dependent behavior arises from inherent physical properties of the material rather than from extraneous impurities, as had been previously suggested.

The new findings are based on sophisticated inelastic neutron-scattering experiments performed on several samples of barium iron nickel arsenide at the PUMA triple axis spectrometer at TUM's Heinz Maier-Leibnitz Zentrum in Garching, Germany. The research team said they hope the findings will prove useful in explaining the underlying physics of directionally dependent electronic phenomena that have been observed in several different types of superconducting materials.

"Most high-temperature superconductors, and many closely related compounds, exhibit a number of exotic electronic phases, particularly as they approach the critical temperature where superconductivity arises," said Pengcheng Dai, professor of physics and astronomy at Rice and the study's senior corresponding author. "Inelastic neutron scattering and other techniques are now allowing us to explore the physical basis of many of these phases."

Explaining high-temperature superconductivity remains the foremost challenge in condensed matter physics. First documented in 1986, the phenomenon is marked by zero electrical resistance in some crystalline ceramic materials below a critical temperature. While very cold, the critical temperatures for high-temperature superconductors -- between 50 and 150 kelvins above absolute zero -- are relatively high in comparison with the temperatures required for conventional superconductivity.

Like most high-temperature superconductors, barium iron nickel arsenide is a composite crystal. Its molecular structure consists of layers of arsenic and barium atoms that are sandwiched between checkerboard planes of iron atoms. The nickel atoms are then partially substituted for iron to tune the material's physical properties. The atoms in the crystals form an ordered pattern that looks identical in both the right-left (x-axis) and forward-back (y-axis) directions, but not in the up-down (z-axis).

At room temperature, the material acts as one might expect, conducting electricity equally well along both its x-axis and y-axis. However, as the material is cooled to near the critical temperature for magnetism, it passes through a phase where electrical resistance is higher in one direction than the other. Physicists call directionally dependent behavior "anisotropic resistance."

In the new study, Dai and colleagues bombarded crystals of barium iron nickel arsenide with neutrons. Neutron-scattering measurements can reveal the molecular structure of materials in great detail, and inelastic neutron-scattering tests allow physicists to see, among others, the vibrational properties of materials. In the magnetic inelastic scattering experiment at TUM, the incoming neutrons brought about short-lived magnetic waves in the crystals. Surprisingly, the intensity of these magnetic waves turned out to be different in the x and y directions. The experiments revealed that this directional dependence of magnetic excitations in the barium iron nickel arsenide occurs at precisely the same temperature range as the anisotropic resistance, thus establishing a crucial link between the two phenomena.

Rice theoretical physicist and study co-author Andriy Nevidomskyy, assistant professor of physics and astronomy, used the analogy of a crowd gathered at a stadium to watch a sporting event.

"During the game, all eyes are on the field, and this is an ordered state that describes all the individuals in the crowd in relation to one another," he said. "This state corresponds to the collective arrangement of electrons we see in magnetism and in superconductivity. The disordered arrangement we observe at room temperature, on the other hand, corresponds to the chaos we would see in the crowd one hour before the game begins, when people are turning from side to side and occasionally glancing at the field.

"The anisotropic state found in our study corresponds to a moment just before the kickoff, when the individuals are still looking in random directions but are aware that the game is about to start," Nevidomskyy said. "The incoming neutron pulse is the equivalent of someone blowing a whistle on the field. For a split second, the crowd reacts as one to the whistle, and every head turns to see if the game has begun. The individuals in the crowd quickly return to their random behavior, but the whistle has revealed an order that wasn't present an hour before."

The inelastic neutron scattering experiments uncovered an analogous behavior in the barium iron nickel arsenide. At high temperatures, the pulse of energy revealed no underlying order. The temporary, collective anisotropic order occurred only in the brief temperature interval prior to the onset of magnetism where the anisotropic resistance had previously been measured.

Rice theoretical physicist Qimiao Si, another study co-author, said the magnetic behavior observed by the inelastic neutron-scattering measurements reflects the way the spins of the electrons are dynamically organized in the material.

"This spin excitation anisotropy sheds new light on the microscopic origins of electronic phases in the iron pnictide superconductors," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. "It may help explain the interplay between magnetism and superconductivity and, more generally, the mechanism for superconductivity, in the iron pnictide superconductors."

###

Study co-authors include Xingye Lu, Rui Zhang and Huiqian Luo, all of the Chinese Academy of Sciences, and J.T. Park of TUM's Heinz Maier-Leibnitz Zentrum. The research was funded by China's Ministry of Science and Technology, the National Natural Science Foundation of China, the Robert A. Welch Foundation, the National Science Foundation and the Alexander von Humboldt Foundation.

A high-resolution infographic is available for download at: http://news.rice.edu/wp-content/uploads/2014/07/AnistropyInHighTemp.pdf

Credit: Tanyia Johnson/Rice University

A copy of the Science Express paper is available at: http://www.sciencemag.org/content/early/recent

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Jade Boyd | Eurek Alert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>