Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Phosphorus Level That Leads to Declines in Stream Water Quality

06.01.2010
A new Baylor University study funded by the Environmental Protection Agency has found that concentrations of phosphorus above 20 parts per billion (ppb) are linked to declines in water quality and aquatic plant and animal life.

The study, which is the first to utilize the new Baylor Experimental Aquatic Research (BEAR) stream facility, demonstrates with certainty that an amount of phosphorus over a certain level does indeed cause negative changes observed in many Texas streams.

“This study is the first to really link nutrient field observations to controlled experiments and allows water managers to use the research as the scientific basis for water management strategies,” said Dr. Ryan King, associate professor of biology at Baylor, who led the study. “We were able to link cause and effect and show that the ecology of the streams is very sensitive to phosphorus.”

According the scientific literature, nutrient pollution – specifically phosphorus – is the most common cause of poor water quality in lakes, streams and wetlands in the United States. For instance, one of the most noticeable consequences of nutrient pollution is the accelerated growth of aquatic vegetation, like algae, which produces an undesirable disturbance to the balance of organisms present in the water. Explosive growths of nuisance algae can taint drinking water, cause foul odors and can result in dissolved oxygen shortages that kill fish and other aquatic organisms.

In Texas, phosphorus has been identified by the Texas Commission on Environmental Quality as the nutrient that would have the most effect in limiting algal and plant growth. However, until now, numerical nutrient criteria to control phosphorus levels have largely been developed subjectively and without experimental evidence to support them.

The Baylor researchers collected water nutrient samples and measured algae and aquatic vegetation growth over a two-year period from 26 different streams in Texas. They compared phosphorus levels to how much algae and aquatic vegetation was present. The researchers then conducted controlled experiments at the BEAR facility by dosing the streams with various phosphorus levels.

In both field observations and BEAR experiments, King and his team found that concentrations of phosphorus above 20 ppb are linked to declines in water quality and aquatic plant and animal life. They found filamentous algae levels dramatically increased with higher phosphorus levels, while the thickness of periphyton, which are algae attached to rocks, and the amount of aquatic plans declined. King and his team also found the level of dissolved oxygen, which is important for fish survival, plummeted when phosphorus levels were higher than 20 ppb and the stream’s water flow was low.

Dr. Bryan Brooks, associate professor of environmental sciences at Baylor, and several Baylor graduate students also collaborated on the project.

About BEAR

The only one of its kind at an academic institution in the United States and one of a few in the world, the Baylor Experimental Aquatic Research (BEAR) stream facility is outfitted with 12 miniature “real life” streams, which can be manipulated to look and act like streams found across central Texas and in other regions. The streams measure 60 feet in length and allow researchers to test aquatic contaminants in a controlled setting. In addition to the model streams, the research facility is outfitted with 24 model wetlands and is located near the Waco Wetlands west of the city limits.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>