Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Finds Phosphorus Level That Leads to Declines in Stream Water Quality

A new Baylor University study funded by the Environmental Protection Agency has found that concentrations of phosphorus above 20 parts per billion (ppb) are linked to declines in water quality and aquatic plant and animal life.

The study, which is the first to utilize the new Baylor Experimental Aquatic Research (BEAR) stream facility, demonstrates with certainty that an amount of phosphorus over a certain level does indeed cause negative changes observed in many Texas streams.

“This study is the first to really link nutrient field observations to controlled experiments and allows water managers to use the research as the scientific basis for water management strategies,” said Dr. Ryan King, associate professor of biology at Baylor, who led the study. “We were able to link cause and effect and show that the ecology of the streams is very sensitive to phosphorus.”

According the scientific literature, nutrient pollution – specifically phosphorus – is the most common cause of poor water quality in lakes, streams and wetlands in the United States. For instance, one of the most noticeable consequences of nutrient pollution is the accelerated growth of aquatic vegetation, like algae, which produces an undesirable disturbance to the balance of organisms present in the water. Explosive growths of nuisance algae can taint drinking water, cause foul odors and can result in dissolved oxygen shortages that kill fish and other aquatic organisms.

In Texas, phosphorus has been identified by the Texas Commission on Environmental Quality as the nutrient that would have the most effect in limiting algal and plant growth. However, until now, numerical nutrient criteria to control phosphorus levels have largely been developed subjectively and without experimental evidence to support them.

The Baylor researchers collected water nutrient samples and measured algae and aquatic vegetation growth over a two-year period from 26 different streams in Texas. They compared phosphorus levels to how much algae and aquatic vegetation was present. The researchers then conducted controlled experiments at the BEAR facility by dosing the streams with various phosphorus levels.

In both field observations and BEAR experiments, King and his team found that concentrations of phosphorus above 20 ppb are linked to declines in water quality and aquatic plant and animal life. They found filamentous algae levels dramatically increased with higher phosphorus levels, while the thickness of periphyton, which are algae attached to rocks, and the amount of aquatic plans declined. King and his team also found the level of dissolved oxygen, which is important for fish survival, plummeted when phosphorus levels were higher than 20 ppb and the stream’s water flow was low.

Dr. Bryan Brooks, associate professor of environmental sciences at Baylor, and several Baylor graduate students also collaborated on the project.

About BEAR

The only one of its kind at an academic institution in the United States and one of a few in the world, the Baylor Experimental Aquatic Research (BEAR) stream facility is outfitted with 12 miniature “real life” streams, which can be manipulated to look and act like streams found across central Texas and in other regions. The streams measure 60 feet in length and allow researchers to test aquatic contaminants in a controlled setting. In addition to the model streams, the research facility is outfitted with 24 model wetlands and is located near the Waco Wetlands west of the city limits.

Matt Pene | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>