Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Needle Biopsies Safe in 'Eloquent' Areas of Brain

08.06.2009
After a review of 284 cases, specialists at the Brain Tumor Center at the University of Cincinnati (UC) Neuroscience Institute have concluded that performing a stereotactic needle biopsy in an area of the brain associated with language or other important functions carries no greater risk than a similar biopsy in a less critical area of the brain.

The retrospective study, led by Christopher McPherson, MD, director of the division of surgical neuro-oncology at UC and a Mayfield Clinic neurosurgeon, was published online in May in the Journal of Neurosurgery. The abstract can be accessed at http://thejns.org/doi/abs/10.3171/2009.3.JNS081695.

The UC study compared the complication rates of stereotactic biopsies in functional, or “eloquent,” areas of the brain that were associated with language, vision, and mobility to areas that were not associated with critical functions. Eloquent areas included the brainstem, basal ganglia, corpus callosum, motor cortex, thalamus, and visual cortex. Complications were defined as the worsening of existing neurological deficits, seizures, brain hemorrhaging and death.

“Needle biopsies in eloquent areas have generally been acknowledged to be safe, because the needle causes only a small amount of disruption to the brain,” McPherson explains. “But until now, researchers had not actually documented that biopsies in eloquent areas were as safe as those in non-eloquent areas.”

To make that comparison, McPherson’s team studied records of 284 stereotactic needle biopsies performed by 19 Mayfield Clinic neurosurgeons between January 2000 and December 2006. In the 160 biopsies that involved eloquent areas of the brain, complications occurred in nine cases (5.6 percent of the total). In the 124 biopsies that involved non-eloquent areas, complications occurred in 10 cases (8.1 percent). The difference was not statistically significant.

Overall, 19 of the 284 patients, or 6.7 percent, suffered complications. Thirteen of those patients recovered completely or somewhat from their complications, while six (2.1 percent of the total number of patients biopsied) experienced permanent neurological decline.

“Diagnosing and treating brain tumors always carries risk,” McPherson says. “Within that context, the results of this large sampling of biopsies are encouraging overall and reinforce our belief that stereotactic biopsy is a valuable diagnostic tool. Stereotactic biopsy is a safe way for us to remove a tissue sample for the diagnosis of a brain tumor, even when the tumor is in a challenging and dangerous part of the brain.”

Additional co-authors of the study are Ronald Warnick, MD, director of the UC Brain Tumor Center and chairman of the Mayfield Clinic; James Leach, MD, associate professor of neuroradiology at UC and a neuroradiologist at Cincinnati Children’s Hospital Medical Center and the UC Neuroscience Institute; and Ellen Air, MD, PhD, a resident in the UC Department of Neurosurgery.

The Brain Tumor Center, under Warnick’s direction, treats hundreds of patients from the Greater Cincinnati region and beyond each year. The multidisciplinary center, which includes specialists in neurosurgery, radiology, radiation oncology, otolaryngology, internal medicine and physical medicine and rehabilitation, is committed to evidence-based medicine, compassionate care, research and the utilization of emerging therapies and technologies.

Cindy Starr | EurekAlert!
Further information:
http://www.mayfieldclinic.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>