Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Finds Needle Biopsies Safe in 'Eloquent' Areas of Brain

After a review of 284 cases, specialists at the Brain Tumor Center at the University of Cincinnati (UC) Neuroscience Institute have concluded that performing a stereotactic needle biopsy in an area of the brain associated with language or other important functions carries no greater risk than a similar biopsy in a less critical area of the brain.

The retrospective study, led by Christopher McPherson, MD, director of the division of surgical neuro-oncology at UC and a Mayfield Clinic neurosurgeon, was published online in May in the Journal of Neurosurgery. The abstract can be accessed at

The UC study compared the complication rates of stereotactic biopsies in functional, or “eloquent,” areas of the brain that were associated with language, vision, and mobility to areas that were not associated with critical functions. Eloquent areas included the brainstem, basal ganglia, corpus callosum, motor cortex, thalamus, and visual cortex. Complications were defined as the worsening of existing neurological deficits, seizures, brain hemorrhaging and death.

“Needle biopsies in eloquent areas have generally been acknowledged to be safe, because the needle causes only a small amount of disruption to the brain,” McPherson explains. “But until now, researchers had not actually documented that biopsies in eloquent areas were as safe as those in non-eloquent areas.”

To make that comparison, McPherson’s team studied records of 284 stereotactic needle biopsies performed by 19 Mayfield Clinic neurosurgeons between January 2000 and December 2006. In the 160 biopsies that involved eloquent areas of the brain, complications occurred in nine cases (5.6 percent of the total). In the 124 biopsies that involved non-eloquent areas, complications occurred in 10 cases (8.1 percent). The difference was not statistically significant.

Overall, 19 of the 284 patients, or 6.7 percent, suffered complications. Thirteen of those patients recovered completely or somewhat from their complications, while six (2.1 percent of the total number of patients biopsied) experienced permanent neurological decline.

“Diagnosing and treating brain tumors always carries risk,” McPherson says. “Within that context, the results of this large sampling of biopsies are encouraging overall and reinforce our belief that stereotactic biopsy is a valuable diagnostic tool. Stereotactic biopsy is a safe way for us to remove a tissue sample for the diagnosis of a brain tumor, even when the tumor is in a challenging and dangerous part of the brain.”

Additional co-authors of the study are Ronald Warnick, MD, director of the UC Brain Tumor Center and chairman of the Mayfield Clinic; James Leach, MD, associate professor of neuroradiology at UC and a neuroradiologist at Cincinnati Children’s Hospital Medical Center and the UC Neuroscience Institute; and Ellen Air, MD, PhD, a resident in the UC Department of Neurosurgery.

The Brain Tumor Center, under Warnick’s direction, treats hundreds of patients from the Greater Cincinnati region and beyond each year. The multidisciplinary center, which includes specialists in neurosurgery, radiology, radiation oncology, otolaryngology, internal medicine and physical medicine and rehabilitation, is committed to evidence-based medicine, compassionate care, research and the utilization of emerging therapies and technologies.

Cindy Starr | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>