Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Needle Biopsies Safe in 'Eloquent' Areas of Brain

08.06.2009
After a review of 284 cases, specialists at the Brain Tumor Center at the University of Cincinnati (UC) Neuroscience Institute have concluded that performing a stereotactic needle biopsy in an area of the brain associated with language or other important functions carries no greater risk than a similar biopsy in a less critical area of the brain.

The retrospective study, led by Christopher McPherson, MD, director of the division of surgical neuro-oncology at UC and a Mayfield Clinic neurosurgeon, was published online in May in the Journal of Neurosurgery. The abstract can be accessed at http://thejns.org/doi/abs/10.3171/2009.3.JNS081695.

The UC study compared the complication rates of stereotactic biopsies in functional, or “eloquent,” areas of the brain that were associated with language, vision, and mobility to areas that were not associated with critical functions. Eloquent areas included the brainstem, basal ganglia, corpus callosum, motor cortex, thalamus, and visual cortex. Complications were defined as the worsening of existing neurological deficits, seizures, brain hemorrhaging and death.

“Needle biopsies in eloquent areas have generally been acknowledged to be safe, because the needle causes only a small amount of disruption to the brain,” McPherson explains. “But until now, researchers had not actually documented that biopsies in eloquent areas were as safe as those in non-eloquent areas.”

To make that comparison, McPherson’s team studied records of 284 stereotactic needle biopsies performed by 19 Mayfield Clinic neurosurgeons between January 2000 and December 2006. In the 160 biopsies that involved eloquent areas of the brain, complications occurred in nine cases (5.6 percent of the total). In the 124 biopsies that involved non-eloquent areas, complications occurred in 10 cases (8.1 percent). The difference was not statistically significant.

Overall, 19 of the 284 patients, or 6.7 percent, suffered complications. Thirteen of those patients recovered completely or somewhat from their complications, while six (2.1 percent of the total number of patients biopsied) experienced permanent neurological decline.

“Diagnosing and treating brain tumors always carries risk,” McPherson says. “Within that context, the results of this large sampling of biopsies are encouraging overall and reinforce our belief that stereotactic biopsy is a valuable diagnostic tool. Stereotactic biopsy is a safe way for us to remove a tissue sample for the diagnosis of a brain tumor, even when the tumor is in a challenging and dangerous part of the brain.”

Additional co-authors of the study are Ronald Warnick, MD, director of the UC Brain Tumor Center and chairman of the Mayfield Clinic; James Leach, MD, associate professor of neuroradiology at UC and a neuroradiologist at Cincinnati Children’s Hospital Medical Center and the UC Neuroscience Institute; and Ellen Air, MD, PhD, a resident in the UC Department of Neurosurgery.

The Brain Tumor Center, under Warnick’s direction, treats hundreds of patients from the Greater Cincinnati region and beyond each year. The multidisciplinary center, which includes specialists in neurosurgery, radiology, radiation oncology, otolaryngology, internal medicine and physical medicine and rehabilitation, is committed to evidence-based medicine, compassionate care, research and the utilization of emerging therapies and technologies.

Cindy Starr | EurekAlert!
Further information:
http://www.mayfieldclinic.com

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>