Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Needle Biopsies Safe in 'Eloquent' Areas of Brain

08.06.2009
After a review of 284 cases, specialists at the Brain Tumor Center at the University of Cincinnati (UC) Neuroscience Institute have concluded that performing a stereotactic needle biopsy in an area of the brain associated with language or other important functions carries no greater risk than a similar biopsy in a less critical area of the brain.

The retrospective study, led by Christopher McPherson, MD, director of the division of surgical neuro-oncology at UC and a Mayfield Clinic neurosurgeon, was published online in May in the Journal of Neurosurgery. The abstract can be accessed at http://thejns.org/doi/abs/10.3171/2009.3.JNS081695.

The UC study compared the complication rates of stereotactic biopsies in functional, or “eloquent,” areas of the brain that were associated with language, vision, and mobility to areas that were not associated with critical functions. Eloquent areas included the brainstem, basal ganglia, corpus callosum, motor cortex, thalamus, and visual cortex. Complications were defined as the worsening of existing neurological deficits, seizures, brain hemorrhaging and death.

“Needle biopsies in eloquent areas have generally been acknowledged to be safe, because the needle causes only a small amount of disruption to the brain,” McPherson explains. “But until now, researchers had not actually documented that biopsies in eloquent areas were as safe as those in non-eloquent areas.”

To make that comparison, McPherson’s team studied records of 284 stereotactic needle biopsies performed by 19 Mayfield Clinic neurosurgeons between January 2000 and December 2006. In the 160 biopsies that involved eloquent areas of the brain, complications occurred in nine cases (5.6 percent of the total). In the 124 biopsies that involved non-eloquent areas, complications occurred in 10 cases (8.1 percent). The difference was not statistically significant.

Overall, 19 of the 284 patients, or 6.7 percent, suffered complications. Thirteen of those patients recovered completely or somewhat from their complications, while six (2.1 percent of the total number of patients biopsied) experienced permanent neurological decline.

“Diagnosing and treating brain tumors always carries risk,” McPherson says. “Within that context, the results of this large sampling of biopsies are encouraging overall and reinforce our belief that stereotactic biopsy is a valuable diagnostic tool. Stereotactic biopsy is a safe way for us to remove a tissue sample for the diagnosis of a brain tumor, even when the tumor is in a challenging and dangerous part of the brain.”

Additional co-authors of the study are Ronald Warnick, MD, director of the UC Brain Tumor Center and chairman of the Mayfield Clinic; James Leach, MD, associate professor of neuroradiology at UC and a neuroradiologist at Cincinnati Children’s Hospital Medical Center and the UC Neuroscience Institute; and Ellen Air, MD, PhD, a resident in the UC Department of Neurosurgery.

The Brain Tumor Center, under Warnick’s direction, treats hundreds of patients from the Greater Cincinnati region and beyond each year. The multidisciplinary center, which includes specialists in neurosurgery, radiology, radiation oncology, otolaryngology, internal medicine and physical medicine and rehabilitation, is committed to evidence-based medicine, compassionate care, research and the utilization of emerging therapies and technologies.

Cindy Starr | EurekAlert!
Further information:
http://www.mayfieldclinic.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>