Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds molecular mechanisms that control Rb2/p130 gene expression in lung cancer

28.02.2011
Despite innumerable studies on lung cancer, many aspects of the disease have yet to be understood, including the role played by the retinoblastoma-related protein Rb2/p130 in the evolution of the disease.

In a new study, researchers from the Sbarro Health Research Organization Center for Biotechnology Research (SHRO), a cancer, cardiovascular and diabetes research center located in the College of Science and Technology at Temple University in Philadelphia, PA, and at the University of Siena in Siena, Italy examined mechanisms that control Rb2/p130 gene expression in lung fibroblasts and characterize the effects of Rb2/p130 deregulation on the proliferative features of lung cancer cells. Most importantly, their findings reveal why the gene is expressed differently in small and nonsmall lung cancer cells.

The study was funded by SHRO and the Human Health Foundation, a nonprofit biomedical research organization in Terni, Italy. It was published in Molecular Cancer Research.

The new findings disclose the mechanism controlling Rb2/p130 gene expression in lung cells, and that involve two relatively new proteins, CCCTC-binding factor (CTCF) and BORIS (CTCF-paralogue).

"Our research shows that CTCF and BORIS directly regulate Rb2/p130 gene expression in lung cells," says Marcella Macaluso, Ph.D., one of the authors of the study. "We observed that in small lung cancer cells Rb2/p130 exhibits low expression levels, while in non- small lung cancer cells it is overexpressed compared to normal lung cells. However, until now, there were insufficient and conflicting data that did not allow us to precisely link the deregulated expression of Rb2/p130 in lung cancer cells with the genetic mutation of this gene. This study finally disclosed the mechanism and the players controlling Rb2/p130 expression, and these findings have the high potential to provide important information for understanding the proliferative and antiproliferative signals triggered by Rb2/p130."

Also, the research shows that Rb2/p130 is engaged in a complex network of interactions with DNA methyltransferases (DNMTs) and other proteins, including CTCF and BORIS, that are involved in the epigenetic control of chromatin organization and transcription. This complex network of proteins seems to regulate cellular senescence – or aging -- that is a potent anti-cancer mechanism.

"Our studies may provide new insights into the molecular pathways that that are active and correlated to Rb2/p130 expression, new biomarkers for an early diagnosis of lung cancer and/or predictive factors to determine the effect on tumor treatments and insights into the development of therapies based upon clinical modulation of Rb2/p130, CTCF and/or BORIS expression," says Dr. Macaluso.

Future studies are planned to study and decisively dissect the multiple functions of Rb2/p130 in non-small and small cell lung cancer.

Sbarro Health Research Organization Center for Biotechnology Research (www.shro.org) funds the Sbarro Institute for Cancer Research and Molecular Medicine, a leading nonprofit research center for cancer, diabetes, and cardiovascular disease. Based in Philadelphia, Pennsylvania on the campus of Temple University and the University of Siena in Italy, our programs train young scientists from around the globe.

Ilene Raymond Rush | EurekAlert!
Further information:
http://www.shro.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>