Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds molecular link between insufficient sleep, insulin resistance

16.10.2012
Researchers find measurable difference in how fat tissue responds to insulin after as little as four nights of restricted sleep

Lack of sleep can change the body’s fat tissue, causing it to behave more like the fat found in an obese or diabetic person, according to a study led by a Cedars-Sinai researcher.

Insufficient sleep has been known to increase the risk of insulin resistance, Type 2 diabetes and obesity, but the study, published by Annals of Internal Medicine in its Oct. 16 issue, identifies the first ever example of an actual metabolic tissue change after sleep deprivation.

“For long term health, you have to protect your sleep,” said Josiane Broussard, PhD, the study’s first author “This study, while small, offers an important clue about the function of sleep and why sleep deprivation leaves us more vulnerable to Type 2 diabetes.”

Even your fat cells require sleep, said Broussard, a fellow at the Cedars-Sinai Diabetes and Obesity Research Institute. In addition to finding a direct connection between sleep loss and disruption of energy regulation in humans, it also challenges the notion that the primary function of sleep is to rest the brain, indicating sleep also plays a role in metabolism.

According to the Centers for Disease Control and Prevention, diabetes affects 25.8 million people in the United States. An estimated 79 million Americans are prediabetic. Diabetes is the seventh leading cause of death in the United States and a major cause of heart disease and stroke.

The clinical study, which was undertaken when Broussard was at the University of Chicago, followed a small number of healthy adults through four days of 4.5 hours in bed and four days of 8.5 hours in bed. The subjects’ diet and level of physical activity were identical regardless of their amount of sleep. After each cycle, researchers took a tissue sample from them for analysis.

After just four nights of sleep restriction, which amounted to just over 14 hours of cumulative sleep loss, the fat tissue samples from the otherwise healthy participants much more closely resembled tissue samples from diabetic or obese subjects. The sleep-deprived participants’ tissue was nearly 30 percent less sensitive to insulin, about the same deficit as that observed in tissue samples from diabetic and obese patients compared to normal healthy adults.

Insulin is a hormone produced by the pancreas that helps the body process sugars. In insulin-resistant patients, the body does not respond appropriately to normal levels of insulin, forcing the pancreas to produce increasing amounts of the hormone to process the same amount of sugar.

The study was one of the first to bring together sleep research experts with biologists focused on energy regulation and metabolism in adipose tissue. Broussard pulled together the team for this project, which included University of Chicago sleep researchers Eve Van Cauter, PhD, Esra Tasali, MD, diabetes specialist David A. Ehrmann, MD, and Matthew J. Brady, PhD, who studies how insulin regulates energy storage in fat and liver cells.

“This eye-opening study helps cement the link between sleep and diabetes, and also suggests that adequate sleep, like diet and exercise, is one of the healthy habits we can adopt to prevent or treat diabetes,” said Broussard, Society in Science—Branco Weiss Fellow at the Cedars-Sinai..

Broussard is continuing her research at Cedars-Sinai, where she is looking at how sleep restriction can affect the body’s organs, cardiac function and blood pressure. Her research fits in well with the goals of the Cedars-Sinai Diabetes and Obesity Research Institute, said Richard Bergman, PhD, the institute’s director.

“Research like this leads us to a better understanding of what factors make us more susceptible to diabetes, obesity and the conditions that lead to them – and bring us another step closer to being able to better predict, prevent, treat and cure these ailments,” Bergman said.

This research for the paper titled “Impaired Insulin Signaling in Human Adipocytes” was supported by National Institutes of Health grants R01-HL086459, 5T32-HL07909, CTSA UL1-RR024999, P60-DK020595, P50 HD-057796, and P01-AG11412 as well as Society in Science through the Branco Weiss Fellowship awarded to Broussard.

Nicole White | Cedars-Sinai News
Further information:
http://www.cshs.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>