Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds that mild winters are detrimental to butterflies

The recent mild winter throughout much of the United States was a cause for celebration for many. However, butterfly aficionados shouldn't be joining in the celebration.

A new study by Jessica Hellmann, associate professor of biological sciences at the University of Notre Dame, and researchers from Western University found that mild winters, such as the one many of us just experienced, can be taxing for some butterfly or possibly other species.

Hellmann and her fellow researchers studied caterpillars of the Propertius Duskywing butterfly, which feed on Gary Oak trees. This species of caterpillar, like many insects, has a higher metabolic rate and burns more fat during mild winters.

"The energy reserves the caterpillars collect in the summer need to provide enough energy for both overwintering and metamorphosing into a butterfly in the spring," Caroline William, lead author of the study, said.

So a butterfly needs to conserve as much energy as it can during the winter months. In the paper, Hellmann and her colleagues explain for the first time how warmer winters can lead to a decrease in the number of butterflies.

However, Hellmann and the Western University researchers found that warmer winters might not always reduce butterfly populations as much as one might initially think. They reared caterpillars in two different locations: one which often experiences more variable and warmer winter temperatures and one which generally features more stable and generally cooler winter temperatures. The caterpillars that were exposed to the warmer and more variable conditions were better able to withstand the warmer conditions, simply by being exposed to them. They did so by lowering the sensitivity of their metabolism.

However, the ability of even caterpillars accustomed to warmer, more variable winters to cope with such conditions is still limited, according to the researchers. They calculated the energy use of both groups of caterpillars and discovered that the caterpillars that lower their metabolic rates to deal with warmer winters still use significantly more energy to survive them.

"We still have lot to learn about how organisms will respond to climate change," Hellmann said. "Our study shows significant biological effects of climate change, but it also shows that organisms can partially adjust their physiology to compensate. We now need to discover if other species adjust in similar ways to our example species."

So although mild winters may be a cause for celebration for many of us, those who are concerned are biodiversity might find them to be much more somber seasons.

The research was funded by the Natural Sciences and Engineering Council of Canada, the Canadian Foundation for Innovation, the Ontario Ministry of Research and Innovation and the U.S. Department of Energy.

Jessica Hellmann | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>