Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds that mild winters are detrimental to butterflies

20.04.2012
The recent mild winter throughout much of the United States was a cause for celebration for many. However, butterfly aficionados shouldn't be joining in the celebration.

A new study by Jessica Hellmann, associate professor of biological sciences at the University of Notre Dame, and researchers from Western University found that mild winters, such as the one many of us just experienced, can be taxing for some butterfly or possibly other species.

Hellmann and her fellow researchers studied caterpillars of the Propertius Duskywing butterfly, which feed on Gary Oak trees. This species of caterpillar, like many insects, has a higher metabolic rate and burns more fat during mild winters.

"The energy reserves the caterpillars collect in the summer need to provide enough energy for both overwintering and metamorphosing into a butterfly in the spring," Caroline William, lead author of the study, said.

So a butterfly needs to conserve as much energy as it can during the winter months. In the paper, Hellmann and her colleagues explain for the first time how warmer winters can lead to a decrease in the number of butterflies.

However, Hellmann and the Western University researchers found that warmer winters might not always reduce butterfly populations as much as one might initially think. They reared caterpillars in two different locations: one which often experiences more variable and warmer winter temperatures and one which generally features more stable and generally cooler winter temperatures. The caterpillars that were exposed to the warmer and more variable conditions were better able to withstand the warmer conditions, simply by being exposed to them. They did so by lowering the sensitivity of their metabolism.

However, the ability of even caterpillars accustomed to warmer, more variable winters to cope with such conditions is still limited, according to the researchers. They calculated the energy use of both groups of caterpillars and discovered that the caterpillars that lower their metabolic rates to deal with warmer winters still use significantly more energy to survive them.

"We still have lot to learn about how organisms will respond to climate change," Hellmann said. "Our study shows significant biological effects of climate change, but it also shows that organisms can partially adjust their physiology to compensate. We now need to discover if other species adjust in similar ways to our example species."

So although mild winters may be a cause for celebration for many of us, those who are concerned are biodiversity might find them to be much more somber seasons.

The research was funded by the Natural Sciences and Engineering Council of Canada, the Canadian Foundation for Innovation, the Ontario Ministry of Research and Innovation and the U.S. Department of Energy.

Jessica Hellmann | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>