Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds that mild winters are detrimental to butterflies

20.04.2012
The recent mild winter throughout much of the United States was a cause for celebration for many. However, butterfly aficionados shouldn't be joining in the celebration.

A new study by Jessica Hellmann, associate professor of biological sciences at the University of Notre Dame, and researchers from Western University found that mild winters, such as the one many of us just experienced, can be taxing for some butterfly or possibly other species.

Hellmann and her fellow researchers studied caterpillars of the Propertius Duskywing butterfly, which feed on Gary Oak trees. This species of caterpillar, like many insects, has a higher metabolic rate and burns more fat during mild winters.

"The energy reserves the caterpillars collect in the summer need to provide enough energy for both overwintering and metamorphosing into a butterfly in the spring," Caroline William, lead author of the study, said.

So a butterfly needs to conserve as much energy as it can during the winter months. In the paper, Hellmann and her colleagues explain for the first time how warmer winters can lead to a decrease in the number of butterflies.

However, Hellmann and the Western University researchers found that warmer winters might not always reduce butterfly populations as much as one might initially think. They reared caterpillars in two different locations: one which often experiences more variable and warmer winter temperatures and one which generally features more stable and generally cooler winter temperatures. The caterpillars that were exposed to the warmer and more variable conditions were better able to withstand the warmer conditions, simply by being exposed to them. They did so by lowering the sensitivity of their metabolism.

However, the ability of even caterpillars accustomed to warmer, more variable winters to cope with such conditions is still limited, according to the researchers. They calculated the energy use of both groups of caterpillars and discovered that the caterpillars that lower their metabolic rates to deal with warmer winters still use significantly more energy to survive them.

"We still have lot to learn about how organisms will respond to climate change," Hellmann said. "Our study shows significant biological effects of climate change, but it also shows that organisms can partially adjust their physiology to compensate. We now need to discover if other species adjust in similar ways to our example species."

So although mild winters may be a cause for celebration for many of us, those who are concerned are biodiversity might find them to be much more somber seasons.

The research was funded by the Natural Sciences and Engineering Council of Canada, the Canadian Foundation for Innovation, the Ontario Ministry of Research and Innovation and the U.S. Department of Energy.

Jessica Hellmann | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>