Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds long nerve grafts restore function in patients with brachial plexus injury

22.03.2013
Hospital for Special Surgery study challenges widely held belief that long nerve grafts do poorly

A study by researchers at Hospital for Special Surgery (HSS) challenges a widely held belief that long nerve grafts do poorly in adults with an axillary nerve injury. Investigators found that the outcomes of long nerve grafts were comparable to those of modern nerve transfers. Both procedures restored function. The axillary nerve supplies the deltoid muscle of the shoulder and an important rotator cuff muscle. It's part of the brachial plexus, a network of nerves that runs down from the neck and across the shoulder.

"Conventional wisdom is that grafts longer than seven centimeters (about three inches) don't work well. We set out to test this theory and found that long nerve grafts did work well. Our study concludes that this type of graft should not be overlooked as an effective treatment for an axillary nerve injury," said Dr. Scott W. Wolfe, lead author and director of the Center for Brachial Plexus and Traumatic Nerve Injury at Hospital for Special Surgery in New York City.

The study, titled, "Comparison between Long Nerve Grafts and Nerve Transfers for Axillary Nerve Injuries," will be presented at the annual meeting of the American Academy of Orthopaedic Surgeons on March 22 in Chicago.

Injury to the brachial plexus can be devastating, leaving people unable to use their arms or hands. The most common cause is a motor vehicle accident or sports injury. The Center for Brachial Plexus and Traumatic Nerve Injury (http://www.hss.edu/BrachialPlexusCenter) at Hospital for Special Surgery offers advanced diagnostic and treatment options, including complex nerve reconstruction surgery.

Nerve reconstruction is considered when nerves are so severely damaged they cannot recover on their own. These complex operations can take up to 12 hours. Surgeons reconstruct nerves either by bridging a nerve defect with a nerve graft or by performing a nerve transfer from a nearby healthy nerve to share its function. In the study, researchers compared these two different techniques to reactivate the deltoid muscle and enable patients to regain the use of their arm.

"A nerve transfer takes a working nerve from one muscle and transfers all or part of that nerve to a non-working nerve or another muscle, so that the two muscles can share the nerve and regain function," Dr. Wolfe explained. "A nerve graft involves taking a nerve from another part of the body. The nerve is removed from a location where its function is less important, usually the leg, and moved to the damaged area. It is used to bridge the defective gap between two ends of a nerve to restore function."

Only 150 to 200 highly specialized surgeons worldwide perform these complex brachial plexus surgeries, and Dr. Wolfe and his colleagues aim to raise awareness that the procedures can restore function in people severely debilitated by a nerve injury. It is important for patients to be treated in a timely manner.

Traditionally, nerve grafts longer than seven centimeters have demonstrated worse outcomes than short grafts and poorer functional outcome when compared to nerve transfer surgery. The purpose of the HSS study was to take another look at longer grafts and directly compare the outcomes to nerve transfers. The results were measured by the patients' recovery and by a test called electromyography, or EMG. This sophisticated test is used to objectively measure muscle and nerve function.

In the study, 11 patients treated with long nerve grafts (> 7cm, range 9cm to 15cm) were compared with 14 patients treated by a nerve transfer over a 10-year period. The average length of the nerve graft was 13cm (5.2 inches). Data was collected at regular intervals, beginning pre-operatively and continuing for up to 11 years.

Prior to surgery, all patients had EMG tests that showed complete absence of deltoid muscle function. After surgery, deltoid recovery, range of motion and EMG evidence of restored function were compared.

The study found no statistically significant differences in shoulder strength, range of motion or electromyographic recovery between nerve graft and nerve transfer patients. All adults in the long nerve graft group regained at least enough strength to be able to move their arm against gravity, but there were two failures in the nerve transfer group. "Going from no function with a limp and numb arm to gaining enough strength to be able to lift a glass to one's lips is a major gain for these patients," said Dr. Wolfe, who is also chief emeritus of the Hand and Upper Extremity Service at HSS. .

"Improvements in the patients receiving a nerve graft were identical to improvements in the nerve transfer group," he added, "so now surgeons can say with confidence that 'a long graft has a good chance of working,' instead of abandoning the procedure when a nerve transfer is not an option."

Unfortunately, some patients suffer long-term impairment from nerve injuries that could have been repaired because many physicians are unaware that nerve reconstructive surgery works, according to Dr. Steve K. Lee, director of research at the Center for Brachial Plexus and Traumatic Nerve Injury. "When a nerve that controls a muscle loses function, it needs to be reactivated within about 12 months, before the muscle atrophies. Studies have shown that if nerve reconstruction surgery is done within six months after a nerve is damaged, patients do much better."

Dr. Joseph Feinberg, who is co-medical director of the Center and performs diagnostic testing to evaluate nerve injuries, says studies such as the one conducted at HSS are important to raise awareness. "In general, many people feel that these types of nerve injuries are permanent and not many treatments are effective. We want people to be aware that they do have options. Procedures can be done to restore function, even when a patient has completely lost the ability to use certain muscle groups," said Dr. Feinberg, who is physiatrist-in-chief at Hospital for Special Surgery.

Dr. Wolfe says the next step will be to conduct a rigorous multi-center study to better define the role of nerve grafts versus nerve transfers and how best to use the two techniques.

Other contributing authors from Hospital for Special Surgery are Parker Johnsen, B.S., who is the presenting author, and Adele Mirbey, B.A.

Paper: Comparison between Long Nerve Grafts and Nerve Transfers for Axillary Nerve Injuries, (Paper 801)

Friday, March 22, 2013, 4:36 p.m. – 4:42 p.m. CDT. McCormick Place, Room N426.

About the Center for Brachial Plexus and Traumatic Nerve Injury

The Center for Brachial Plexus and Traumatic Nerve Injury at Hospital for Special Surgery is a national resource for men and women of all ages, providing diagnostic and reconstructive options for patients with injuries to or dysfunction of the peripheral nerve and brachial plexus. Using a multidisciplinary approach, the center utilizes the expertise of a wide range of health care professionals including orthopedic surgeons, physiatrists, neurologists, radiologists, psychiatrists, rheumatologists, pain management specialists, physical therapists and anesthesiologists, so that patients can benefit from a coordinated treatment experience.
About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology, No. 10 in neurology and No. 5 in geriatrics by U.S. News & World Report (2012-13), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu.
For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Phyllis.Fisher@gmail.com
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>