Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds long nerve grafts restore function in patients with brachial plexus injury

22.03.2013
Hospital for Special Surgery study challenges widely held belief that long nerve grafts do poorly

A study by researchers at Hospital for Special Surgery (HSS) challenges a widely held belief that long nerve grafts do poorly in adults with an axillary nerve injury. Investigators found that the outcomes of long nerve grafts were comparable to those of modern nerve transfers. Both procedures restored function. The axillary nerve supplies the deltoid muscle of the shoulder and an important rotator cuff muscle. It's part of the brachial plexus, a network of nerves that runs down from the neck and across the shoulder.

"Conventional wisdom is that grafts longer than seven centimeters (about three inches) don't work well. We set out to test this theory and found that long nerve grafts did work well. Our study concludes that this type of graft should not be overlooked as an effective treatment for an axillary nerve injury," said Dr. Scott W. Wolfe, lead author and director of the Center for Brachial Plexus and Traumatic Nerve Injury at Hospital for Special Surgery in New York City.

The study, titled, "Comparison between Long Nerve Grafts and Nerve Transfers for Axillary Nerve Injuries," will be presented at the annual meeting of the American Academy of Orthopaedic Surgeons on March 22 in Chicago.

Injury to the brachial plexus can be devastating, leaving people unable to use their arms or hands. The most common cause is a motor vehicle accident or sports injury. The Center for Brachial Plexus and Traumatic Nerve Injury (http://www.hss.edu/BrachialPlexusCenter) at Hospital for Special Surgery offers advanced diagnostic and treatment options, including complex nerve reconstruction surgery.

Nerve reconstruction is considered when nerves are so severely damaged they cannot recover on their own. These complex operations can take up to 12 hours. Surgeons reconstruct nerves either by bridging a nerve defect with a nerve graft or by performing a nerve transfer from a nearby healthy nerve to share its function. In the study, researchers compared these two different techniques to reactivate the deltoid muscle and enable patients to regain the use of their arm.

"A nerve transfer takes a working nerve from one muscle and transfers all or part of that nerve to a non-working nerve or another muscle, so that the two muscles can share the nerve and regain function," Dr. Wolfe explained. "A nerve graft involves taking a nerve from another part of the body. The nerve is removed from a location where its function is less important, usually the leg, and moved to the damaged area. It is used to bridge the defective gap between two ends of a nerve to restore function."

Only 150 to 200 highly specialized surgeons worldwide perform these complex brachial plexus surgeries, and Dr. Wolfe and his colleagues aim to raise awareness that the procedures can restore function in people severely debilitated by a nerve injury. It is important for patients to be treated in a timely manner.

Traditionally, nerve grafts longer than seven centimeters have demonstrated worse outcomes than short grafts and poorer functional outcome when compared to nerve transfer surgery. The purpose of the HSS study was to take another look at longer grafts and directly compare the outcomes to nerve transfers. The results were measured by the patients' recovery and by a test called electromyography, or EMG. This sophisticated test is used to objectively measure muscle and nerve function.

In the study, 11 patients treated with long nerve grafts (> 7cm, range 9cm to 15cm) were compared with 14 patients treated by a nerve transfer over a 10-year period. The average length of the nerve graft was 13cm (5.2 inches). Data was collected at regular intervals, beginning pre-operatively and continuing for up to 11 years.

Prior to surgery, all patients had EMG tests that showed complete absence of deltoid muscle function. After surgery, deltoid recovery, range of motion and EMG evidence of restored function were compared.

The study found no statistically significant differences in shoulder strength, range of motion or electromyographic recovery between nerve graft and nerve transfer patients. All adults in the long nerve graft group regained at least enough strength to be able to move their arm against gravity, but there were two failures in the nerve transfer group. "Going from no function with a limp and numb arm to gaining enough strength to be able to lift a glass to one's lips is a major gain for these patients," said Dr. Wolfe, who is also chief emeritus of the Hand and Upper Extremity Service at HSS. .

"Improvements in the patients receiving a nerve graft were identical to improvements in the nerve transfer group," he added, "so now surgeons can say with confidence that 'a long graft has a good chance of working,' instead of abandoning the procedure when a nerve transfer is not an option."

Unfortunately, some patients suffer long-term impairment from nerve injuries that could have been repaired because many physicians are unaware that nerve reconstructive surgery works, according to Dr. Steve K. Lee, director of research at the Center for Brachial Plexus and Traumatic Nerve Injury. "When a nerve that controls a muscle loses function, it needs to be reactivated within about 12 months, before the muscle atrophies. Studies have shown that if nerve reconstruction surgery is done within six months after a nerve is damaged, patients do much better."

Dr. Joseph Feinberg, who is co-medical director of the Center and performs diagnostic testing to evaluate nerve injuries, says studies such as the one conducted at HSS are important to raise awareness. "In general, many people feel that these types of nerve injuries are permanent and not many treatments are effective. We want people to be aware that they do have options. Procedures can be done to restore function, even when a patient has completely lost the ability to use certain muscle groups," said Dr. Feinberg, who is physiatrist-in-chief at Hospital for Special Surgery.

Dr. Wolfe says the next step will be to conduct a rigorous multi-center study to better define the role of nerve grafts versus nerve transfers and how best to use the two techniques.

Other contributing authors from Hospital for Special Surgery are Parker Johnsen, B.S., who is the presenting author, and Adele Mirbey, B.A.

Paper: Comparison between Long Nerve Grafts and Nerve Transfers for Axillary Nerve Injuries, (Paper 801)

Friday, March 22, 2013, 4:36 p.m. – 4:42 p.m. CDT. McCormick Place, Room N426.

About the Center for Brachial Plexus and Traumatic Nerve Injury

The Center for Brachial Plexus and Traumatic Nerve Injury at Hospital for Special Surgery is a national resource for men and women of all ages, providing diagnostic and reconstructive options for patients with injuries to or dysfunction of the peripheral nerve and brachial plexus. Using a multidisciplinary approach, the center utilizes the expertise of a wide range of health care professionals including orthopedic surgeons, physiatrists, neurologists, radiologists, psychiatrists, rheumatologists, pain management specialists, physical therapists and anesthesiologists, so that patients can benefit from a coordinated treatment experience.
About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology, No. 10 in neurology and No. 5 in geriatrics by U.S. News & World Report (2012-13), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu.
For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Phyllis.Fisher@gmail.com
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>