Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds high exposure to food-borne toxins

14.11.2012
Preschool children are particularly vulnerable to compounds linked to cancer and other conditions.

In a sobering study published in the journal Environmental Health, researchers at UC Davis and UCLA measured food-borne toxin exposure in children and adults by pinpointing foods with high levels of toxic compounds and determining how much of these foods were consumed.

The researchers found that family members in the study, and preschool children in particular, are at high risk for exposure to arsenic, dieldrin, DDE (a DDT metabolite), dioxins and acrylamide. These compounds have been linked to cancer, developmental disabilities, birth defects and other conditions. However, the study also points to dietary modifications that could mitigate risk.

"Contaminants get into our food in a variety of ways," said study principal investigator Irva Hertz-Picciotto, professor and chief of the Division of Environmental and Occupational Health at UC Davis. "They can be chemicals that have nothing to do with the food or byproducts from processing. We wanted to understand the dietary pathway pesticides, metals and other toxins take to get into the body."

Researchers assessed risk by comparing toxin consumption to established benchmarks for cancer risk and non-cancer health risks. All 364 children in the study (207 preschool children between two and seven and 157 school-age children between five and seven) exceeded cancer benchmarks for arsenic, dieldrin, DDE and dioxins. In addition, more than 95 percent of preschool children exceeded non-cancer risk levels for acrylamide, a cooking byproduct often found in processed foods like potato and tortilla chips. Pesticide exposure was particularly high in tomatoes, peaches, apples, peppers, grapes, lettuce, broccoli, strawberries, spinach, dairy, pears, green beans and celery.

"We focused on children because early exposure can have long-term effects on disease outcomes," said Rainbow Vogt, lead author of the study. "Currently, the U.S. Environmental Protection Agency only measures risk based on exposures of individual contaminants. We wanted to understand the cumulative risk from dietary contaminants. The results of this study demonstrate a need to prevent exposure to multiple toxins in young children to lower their cancer risk."

The researchers used data from the 2007 Study of Use of Products and Exposure-Related Behavior (SUPERB), which surveyed households in California with children between two and five to determine how their diets, and other factors, contribute to toxic exposure. Specifically, SUPERB homed in on 44 foods known to have high concentrations of toxic compounds: metals, arsenic, lead and mercury; pesticides chlorpyrifos, permethrin and endosulfan; persistent organic pollutants dioxin, DDT, dieldrin and chlordane; and the food processing byproduct acrylamide. Toxin levels in specific foods were determined through the Total Diet Study and other databases.

Perhaps most disturbing, preschool-age children had higher exposure to more than half the toxic compounds being measured. Even relatively low exposures can greatly increase the risk of cancer or neurological impairment.

"We need to be especially careful about children, because they tend to be more vulnerable to many of these chemicals and their effects on the developing brain," says Hertz-Picciotto.

Though these results are cause for concern, the study also outlines strategies to lower family exposure. For example, organic produce has lower pesticide levels. In addition, toxin types vary in different foods. Certain pesticides may be found in lettuce and broccoli, while others affect peaches and apples.

"Varying our diet and our children's diet could help reduce exposure," said Hertz-Picciotto. "Because different foods are treated differently at the source, dietary variation can help protect us from accumulating too much of any one toxin."

Families also can reduce their consumption of animal meat and fats, which may contain high levels of DDE and other persistent organic pollutants, and switch to organic milk. While mercury is most often found in fish, accumulation varies greatly by species. Smaller fish, lower on the food chain, generally have lower mercury levels. In addition, acrilomides are relatively easy to remove from the diet.

"Acrilomides come from chips and other processed grains, said co-author Deborah Bennett, associate professor of Environmental and Occupational Health at UC Davis. "Even if we set aside the potential toxins in these foods, we probably shouldn't be eating large amounts of them anyway. However, we should be eating fruits, vegetables and fish, which are generally healthy foods. We just need to be more careful in how we approach them."

The study also highlights a number of policy issues, such as how we grow our food and the approval process for potentially toxic compounds. Though the pesticide DDT was banned 40 years ago, the study showed significant risk of DDE exposure.

"Given the significant exposure to legacy pollutants, society should be concerned about the persistence of compounds we are currently introducing into the environment," said Bennett. "If we later discover a chemical has significant health risks, it will be decades before it's completely removed from the ecosystem."

While the study has profound implications for dietary habits, more work needs to be done to quantify risk. Specifically, researchers need to determine how these food-borne toxins interact collectively in the body.

This research was funded by a Science to Achieve Results (STAR) grant #RD-83154001 from the United States Environmental Protection Agency.

Other authors include Diana Cassady and Joshua Frost at the UC Davis Department of Public Health Sciences and Beate Ritz at the UCLA Department of Epidemiology.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu.

Dorsey Griffith | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>