Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Genomic Changes in the Brains of People Who Commit Suicide

23.10.2008
Are genes destiny? Alternatively, are we simply the products of our environment? There is a growing sense that neither of these two possibilities fully captures the essence of the risk for psychiatric disorders.

New light is being shed on the complex interaction of genetic and environmental factors as the result of growth in the field of epigenetics. While genetics is the study of how variation in gene sequence or “genotype” influences traits or “phenotypes,” epigenetics (epi- from the Greek meaning outside or above) is the study of heritable changes in gene function that may occur without modifying the gene sequence, often as a consequence of environmental exposures.

There are an increasing variety of epigenetic mechanisms that have been described, including the regulation of gene function via the methylation or demethylation of DNA. The study by Drs. Michael Poulter and Hymie Anisman and colleagues in the October 15th issue of Biological Psychiatry illustrates one exciting new example in this area of research, an epigenetic study of depression/suicide. The researchers compared the brain tissues of those who had major depressive disorder and committed suicide to those from a control group who died suddenly, from heart attacks and other causes.

They found the genome in people who have committed suicide as a result of major depression was being chemically modified by a process that is normally involved in regulating cell development. As Poulter explains, “We have about 40,000 genes in every cell and the only reason a skin cell becomes a skin cell as opposed to a heart cell is because only a fraction of the genes are being expressed, and the other genes not being expressed are shut down by this genetic process of DNA methylation.” The rate of methylation in the suicide brains was found to be nearly ten times that of the control group, and the gene being shut down was a neurotransmitter receptor that plays a major role in regulating behavior. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, “This is exciting new evidence that genetic and environmental factors may interact to produce specific and long-lasting modifications in brain circuits. Further, these modifications may shape the course of one’s life in extremely important ways, including increasing the risk for major depressive disorder and perhaps suicide.”

“The whole idea that the genome is so malleable in the brain is surprising, because brain cells don’t divide. You get dealt your neurons at the start of life, so the idea that there are still epigenetic mechanisms going on is pretty unusual,” adds Poulter. The authors note that these observations open an entirely new avenue of research and potential therapeutic interventions.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

Further reports about: Brains DNA Psychiatry environmental factors gene function genetic mechanism genomic suicide

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>