Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds flame retardants at high levels in pet dogs

26.04.2011
Indiana University scientists have found chemical flame retardants in the blood of pet dogs at concentrations five to 10 times higher than in humans, but lower than levels found in a previous study of cats.

Their study, "Flame Retardants in the Serum of Pet Dogs and in their Food," appears this month in the journal Environmental Science & Technology. Authors are Marta Venier, an assistant research scientist in the School of Public and Environmental Affairs, and Ronald Hites, a Distinguished Professor in SPEA.

Venier and Hites explore whether pets could serve as "biosentinels" for monitoring human exposure to compounds present in the households that they share. Dogs may be better proxies than cats, they say, because a dog's metabolism is better equipped to break down the chemicals.

The study focuses on the presence of polybrominated diphenyl ethers (PBDEs) in the blood of dogs and in commercial dog food. PBDEs have been widely used as flame retardants in household furniture and electronics equipment. The compounds can migrate out of the products and enter the environment.

"Even though they've been around for quite awhile, we don't know too much about these compounds' toxicological effects on humans or animals," Venier said. "The bottom line is that we still need to keep measuring them, particularly in homes."

PBDE mixtures made up of less-brominated compounds are regarded as more dangerous because they bioaccumulate in animal tissues. These mixtures were banned by the European Union and were voluntarily removed from the U.S. market in 2004, but remain in the environment. Mixtures with more-brominated compounds remain in use in the U.S. but will be phased out by 2013.

Venier and Hites report on an analysis of flame retardants in blood from 17 pet dogs, all of whom live primarily indoors. They also examined samples of the dry dog food that made up the pets' diet, attempting to determine if food was a major source of PBDE exposure.

The average concentration of PBDEs in blood from the dogs was about 2 nanograms per gram, about five to 10 times higher than the levels found in humans in the few studies of human exposure that have been done in North America.

In dog food samples, the researchers found PBDEs at levels averaging about 1 nanogram per gram. That is much higher than levels found in meat and poultry sold as food for humans, suggesting the PBDEs in dog food may result from processing rather than from the food sources.

A 2007 study by Venier, Hites and several co-authors found concentrations of PBDEs in house cats that were 20 to 100 times higher than levels found in humans. A 2010 article by Venier, Hites and two Clemson University researchers also reported high levels of PBDEs in nesting bald eagles.

Venier said the evidence shows dogs metabolize the compounds more rapidly than cats. A previous study showed that dogs produce an enzyme that breaks down organochlorine pesticides, and a similar mechanism may be at work with brominated compounds.

The current study also detected newer flame retardants that have come onto the market as PBDEs have been removed, including Dechlorane Plus, decabromodiphenylethane, and hexabromocyclododecane. The chemicals are largely unregulated but pose concerns because they are structurally similar to organic pollutants that have been linked to environmental and human health effects.

"The concentrations of these newer flame retardants were relatively low compared to the PBDEs," Venier said, "but the fact that they are new and not regulated suggests their levels are going to increase in the future."

The study can be read online at http://pubs.acs.org/doi/full/10.1021/es1043529.

To speak with Venier or Hites, please contact Jana Wilson at SPEA, 812-856-5490, wilsonjs@indiana.edu, or Steve Hinnefeld at University Communications, 812-856-3488, slhinnef@indiana.edu.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Dogs PBDE Spea Venier environmental risk flame retardants food source

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>