Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds flame retardant pollutants at far-flung locations

08.01.2013
Research supports effectiveness of tree bark as novel sampling medium for contamination

Chemicals used as flame retardants are present as environmental pollutants at locations around the globe, including remote sites in Indonesia, Nepal and Tasmania, according to a study by researchers from the Indiana University School of Public and Environmental Affairs.

The study, published this month in the journal Environmental Science and Technology, makes use of a novel but highly effective sampling technique: measuring concentrations of the chemicals in the bark of trees, which absorbs compounds in both vapor and particle phases.

"These findings illustrate further that flame retardants are ubiquitous pollutants and are found all around the world, not only in biota and humans but also in plants," said Amina Salamova, a research associate in the School of Public and Environmental Affairs at IU Bloomington and co-author of the study with Ronald A. Hites, Distinguished Professor in SPEA and in the Department of Chemistry in the College of Arts and Sciences.

The study measured concentrations of brominated and chlorinated flame retardants collected in tree bark samples at 12 locations around the globe: three sites in Canada and single sites in Iceland, Ireland, Norway, Czech Republic, South Africa, Nepal, Indonesia, Tasmania and American Samoa.

The highest concentrations were found at an urban site: Downsview, Ontario, Canada, near Toronto. However, the second-highest concentration of one type of flame retardant, Dechlorane Plus, was found at a remote site at Bukit Kototabang in Indonesia. Researchers don't know the cause of the relatively high concentrations at the site but suspect it may be near a source.

The study was carried out in cooperation with the Global Atmospheric Passive Sampling network, an international monitoring initiative established in 2004 on six continents.

Brominated and chlorinated flame retardants have been used for several decades in consumer products made of plastic, foam, wood and textiles to prevent combustion and slow the spread of fire. They persist in the environment and bio-accumulate in ecosystems and in human tissues. Exposure to the compounds has been associated with thyroid and other endocrine system disruption and with adverse neurological development. As a result, the production and use of certain flame retardants has been restricted in North America and the European Union.

Researchers measured a variety of flame retardants, including widely used polybrominated diphenyl ethers, or PBDE, as well as nonregulated compounds such as Dechlorane Plus and "older" flame retardants that were used in the 1980s. Findings included:

Most of the compounds were detected at all the locations, with concentrations varying widely.

Concentrations were associated with population density, suggesting the compounds most likely entered the environment through their use in nearby homes and offices.

Concentrations found in tree bark are correlated with those measured in previous atmospheric sampling at the sites by the Global Atmospheric Passive Sampling network.

Higher concentrations of flame retardants in bark and the atmosphere have been found by Hites and others in previous studies of the Great Lakes region, especially urban areas near Chicago and Cleveland, and also at cities in China. Even higher concentrations were found in southern Arkansas and at Niagara Falls, N.Y., near the sites of manufacturing facilities for PBDE and Dechlorane Plus, respectively.

The study also confirms the effectiveness of using tree bark as a sampling medium, a technique that Hites and colleagues have used in previous studies of persistent organic pollutants such as flame retardants.

Bark makes an effective sampling medium because of its large surface area and high lipid content. The samples are easy and inexpensive to collect, an advantage in developing countries that lack funding for extensive environmental monitoring programs. Tree bark also collects both vapor and particle phase pollutants, while other samplers collect one or the other.

Support for the study came from the Great Lakes National Program Office of the U.S. Environmental Protection Agency. The article is available online. To speak with Salamova or Hites, contact Steve Hinnefeld at IU Communications, 812-856-3488 or slhinnef@iu.edu, or Jim Hanchett at the School of Public and Environmental Affairs, 812-856-5490 or jimhanch@indiana.edu

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>