Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds changes in fetal epigenetics throughout pregnancy

15.04.2010
May help in diagnosis and prevention of complications

Researchers at Mount Sinai School of Medicine have found that epigenetic marks on human placentas change from the first trimester of pregnancy to the third, a discovery that may allow clinicians to prevent complications in pregnancy.

The finding marks a dramatic departure from the prevailing opinion that epigenetic programming is permanently established 12 weeks after fertilization. Published in the April issue of the American Journal of Obstetrics and Gynecology, the study indicates that clinicians may be able to change the course of a pregnancy through early diagnosis and treatment.

"Our research shows that there are several 'windows of opportunity' during pregnancy to detect risks and also change pregnancy outcomes that may arise later," said the study's senior investigator, Men-Jean Lee, MD, Associate Professor, Obstetrics, Gynecology and Reproductive Science, and Preventive Medicine, Mount Sinai School of Medicine. "We have developed an assay that can allow clinicians to diagnose problems early enough to potentially prevent conditions such as preeclampsia and fetal growth restriction."

Epigenetics generally refers to factors that modify how a gene behaves while not altering the DNA nucleotide sequence of the gene itself. The placenta contains a group of genes, known as "imprinted" genes, which regulate fetal growth. In healthy fetal development, one copy of these genes is normally active and the other copy is silent. Loss of imprinting (LOI) occurs when both sets of genes are reactivated, and is an indicator of potential complications such as preeclampsia and fetal growth restriction.

Using an LOI assay developed by James G. Wetmur, PhD, and Jia Chen, ScD, of Mount Sinai School of Medicine, the research team assessed LOI at the first trimester in 17 placentas and at full term in 14 different placentas. The surprising results showed that more LOI occurred in the first trimester than at full term.

Dr. Lee and her team concluded that genomic imprinting appears to be an ever-changing process in the placenta, meaning that pregnancy risks can change throughout the course of gestation. Previously, the medical community believed imprints remained static after 12 weeks. This same Mount Sinai research team had also previously discovered that the epigenetic marks in placentas from pregnancies with preeclampsia and fetal growth restriction were different from normal pregnancies at full term.

"Ours is the first study to examine LOI in the first trimester and compare it to that of full-term placentas," Dr. Lee said. "Now that we know the epigenetic make-up in the placenta changes during the course of a pregnancy, we can develop biomarkers to see if those pregnancies destined to develop preeclampsia or fetal growth restriction can be detected early enough in pregnancy to allow prevention of these diseases."

An estimated 10 percent of pregnancies are complicated by fetal growth restriction, which increases the risk of stillbirth, cerebral palsy, feeding intolerance, and failure to thrive. Preeclampsia, a condition characterized by high blood pressure and swelling during pregnancy, affects between 7 and 10 percent of pregnant women.

"More research is necessary to determine the impact of this discovery on potentially reducing the risk of other serious conditions like autism, cancer, and childhood obesity," said Dr. Lee.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses The Mount Sinai Hospital and Mount Sinai School of Medicine. The Mount Sinai Hospital is one of the nation's oldest, largest and most-respected voluntary hospitals. Founded in 1852, Mount Sinai today is a 1,171-bed tertiary-care teaching facility that is internationally acclaimed for excellence in clinical care. Last year, nearly 60,000 people were treated at Mount Sinai as inpatients, and there were approximately 530,000 outpatient visits to the Medical Center.

Mount Sinai School of Medicine is internationally recognized as a leader in groundbreaking clinical and basic science research, as well as having an innovative approach to medical education. With a faculty of more than 3,400 in 38 clinical and basic science departments and centers, Mount Sinai ranks among the top 20 medical schools in receipt of National Institute of Health (NIH) grants. For more information, please visit www.mountsinai.org.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>