Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new evidence supporting theory of extraterrestrial impact

12.06.2012
An 18-member international team of researchers that includes James Kennett, professor of earth science at UC Santa Barbara, has discovered melt-glass material in a thin layer of sedimentary rock in Pennsylvania, South Carolina, and Syria.

According to the researchers, the material –– which dates back nearly 13,000 years –– was formed at temperatures of 1,700 to 2,200 degrees Celsius (3,100 to 3,600 degrees Fahrenheit), and is the result of a cosmic body impacting Earth.

These new data are the latest to strongly support the controversial Younger Dryas Boundary (YDB) hypothesis, which proposes that a cosmic impact occurred 12,900 years ago at the onset of an unusual cold climatic period called the Younger Dryas. This episode occurred at or close to the time of major extinction of the North American megafauna, including mammoths and giant ground sloths; and the disappearance of the prehistoric and widely distributed Clovis culture. The researchers' findings appear today in the Proceedings of the National Academy of Sciences.

"These scientists have identified three contemporaneous levels more than 12,000 years ago, on two continents yielding siliceous scoria-like objects (SLO's)," said H. Richard Lane, program director of National Science Foundation's Division of Earth Sciences, which funded the research. "SLO's are indicative of high-energy cosmic airbursts/impacts, bolstering the contention that these events induced the beginning of the Younger Dryas. That time was a major departure in biotic, human and climate history."

Morphological and geochemical evidence of the melt-glass confirms that the material is not cosmic, volcanic, or of human-made origin. "The very high temperature melt-glass appears identical to that produced in known cosmic impact events such as Meteor Crater in Arizona, and the Australasian tektite field," said Kennett.

"The melt material also matches melt-glass produced by the Trinity nuclear airburst of 1945 in Socorro, New Mexico," he continued. "The extreme temperatures required are equal to those of an atomic bomb blast, high enough to make sand melt and boil."

The material evidence supporting the YDB cosmic impact hypothesis spans three continents, and covers nearly one-third of the planet, from California to Western Europe, and into the Middle East. The discovery extends the range of evidence into Germany and Syria, the easternmost site yet identified in the northern hemisphere. The researchers have yet to identify a limit to the debris field of the impact.

Because these three sites in North America and the Middle East are separated by 1,000 to 10,000 kilometers, there were most likely three or more major impact/airburst epicenters for the YDB impact event, likely caused by a swarm of cosmic objects that were fragments of either a meteorite or comet," said Kennett.

The PNAS paper also presents examples of recent independent research that supports the YDB cosmic impact hypothesis, and supports two independent groups that found melt-glass in the YDB layers in Arizona and Venezuela. "The results strongly refute the assertion of some critics that 'no one can replicate' the YDB evidence, or that the materials simply fell from space non-catastrophically," Kennett noted.

He added that the archaeological site in Syria where the melt-glass material was found –– Abu Hureyra, in the Euphrates Valley –– is one of the few sites of its kind that record the transition from nomadic hunter-gatherers to farmer-hunters who live in permanent villages. "Archeologists and anthropologists consider this area the 'birthplace of agriculture,' which occurred close to 12,900 years ago," Kennett said.

"The presence of a thick charcoal layer in the ancient village in Syria indicates a major fire associated with the melt-glass and impact spherules 12,900 years ago," he continued. "Evidence suggests that the effects on that settlement and its inhabitants would have been severe."

Other scientists contributing to the research include Ted Bunch and James H. Wittke of Northern Arizona University; Robert E. Hermes of Los Alamos National Laboratory; Andrew Moore of the Rochester Institute of Technology; James C. Weaver of Harvard University; Douglas J. Kennett of Pennsylvania State University; Paul S. DeCarli of SRI International; James L. Bischoff of the U.S. Geological Survey; Gordon C. Hillman of the University College London; George A. Howard of Restoration Systems; David R. Kimbel of Kimstar Research; Gunther Kletetschka of Charles University in Prague, and of the Czech Academy of Science; Carl Lipo and Sachiko Sakai of California State University, Long Beach; Zsolt Revay of the Technical University of Munich in Germany; Allen West of GeoScience Consulting; and Richard B. Firestone of Lawrence Berkeley National Laboratory.

Andrea Estrada | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>