Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds differences in concussion risk between football helmets

31.01.2014
Football helmets can be designed to reduce the risk of concussions, according to a new study by some of the nation's leading concussion researchers published today in the Journal of Neurosurgery.

The study analyzed head impact data compiled from eight collegiate football teams that included Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois.


The ability of the Riddell Revolution (left) and the Riddell VSR4 (right) helmets to reduce concussion risk was compared in the study. A significant difference in concussion risk between these two helmet designs was found by the authors.

Credit: Virginia Tech

Six years of data were collected between 2005 and 2010. During this time a total of 1833 players wore helmets that were equipped with sensors to measure the biomechanics of over one million head impacts. All players either wore a Riddell VSR4 or Riddell Revolution helmet. The researchers compared the rates of concussion between the two helmet types.

The manuscript reports a 54 percent reduction in concussion risk for players in the Riddell Revolution compared to players in the VSR4 helmet. "This is the first study to control for the number of times players hit their heads when comparing helmet types," said Steve Rowson, lead author and an assistant professor in the Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences.

"No previous study has been able to account for this variable. Controlling for head impacts allows you to compare apples to apples. For example, you're not comparing a player in one helmet who rarely gets hit to a player in another helmet type who frequently gets hit."

The sensors in the helmets measured head acceleration for each impact players experienced. Players in the VSR4 helmets experienced higher head accelerations resulting from impact than players in Revolution helmets. The authors attribute this to the Revolution helmets better modulating the energy transfer from the impact to the head, which results in lower head accelerations. "Helmets that better lower head acceleration reduce concussion risk," Rowson said.

The authors stress that no helmet will ever be able to prevent all concussions. "While some helmets will reduce risk more than others, no helmet can eliminate risk," said Stefan Duma, professor and head of the Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences. Better helmet design is just one of many strategies that play a role in reducing concussions in football. "The most effective strategies are altering league rules and teaching players better techniques. These strategies focus on reducing the number of head impacts that players experience," Duma added. "However, head impacts in football will always occur, even with the best rules and technique. This is where improving helmet design to best reduce concussion risk becomes critical. Our data clearly demonstrate that this is possible."

In addition to Rowson and Duma, other authors of this study were Richard Greenwald, Jonathan Beckwith, and Jeffrey Chu of Simbex, Kevin Guskiewicz and Jason Mihalik of the University of North Carolina, Joseph Crisco and Bethany Wilcox of Brown University, Thomas McAllister of the Indiana University School of Medicine, Arthur Maerlender of Dartmouth College, Steven Broglio of the University of Michigan, Brock Schnebel and Scott Anderson of the University of Oklahoma, and Gunnar Brolinson of the Edward Via College of Osteopathic Medicine.

Lynn Nystrom | VT News
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>