Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds depletion of alveolar macrophages linked to bacterial super-infections

23.07.2013
A recent study published in the July issue of the Journal of Immunology helps explain why some humans contract bacterial super-infections like pneumonia with influenza.

The research was led by Le Bonheur Pediatrician-in-Chief Jon McCullers, MD – an infectious disease specialist who is also chair of the Department of Pediatrics for the University of Tennessee Health Science Center and adjunct faculty at St. Jude Children's Research Hospital.

"It's been known that the influenza virus does something to suppress host immune function, which can facilitate development of deadly secondary bacterial pneumonias," said McCullers. "But we haven't known what that was or why it happens."

McCullers' research – conducted at his National Institutes of Health-funded laboratory at St. Jude Children's Research Hospital by UTHSC graduate student Hazem Ghoneim, a PhD candidate -- used advanced techniques to differentiate types of alveolar macrophages found in the lungs and airways. Researchers found that of the three types identified, only one is truly capable of fending off secondary bacterial infection. This population of macrophages, labeled the resident alveolar macrophages, is depleted during a flu infection.

"We found that influenza is specifically killing these true alveolar macrophages," said McCullers. "The window of time someone is susceptible to secondary infections corresponds with the time it takes for the other two types of alveolar macrophages to differentiate so they are then able to fight off the infection."

McCullers says his study is a step toward developing strategies for treatment.

"This discovery provides a roadmap for developing immunotherapies that can supplement the natural defenses of our body when they are at their weakest. Influenza and pneumonia are the seventh leading cause of death in the U.S., and we desperately need research such as this to improve our armamentarium," said McCullers.

About Le Bonheur Children's Hospital

Le Bonheur Children's Hospital in Memphis, Tenn., treats more than 250,000 children each year in a 255-bed hospital that features state-of-the-art technology and family-friendly resources. Nationally recognized, Le Bonheur is ranked by U.S. News & World Report as a Best Children's Hospital. Serving as a primary teaching affiliate for the University Tennessee Health Science Center, the hospital trains more pediatricians than any other hospital in the state. For more information, please call (901) 287-6030 or visit lebonheur.org. Follow us on Twitter at twitter.com/lebonheurchild or like us at Facebook at facebook.com/lebonheurchildrens.

About the University of Tennessee Health Science Center

As Tennessee's only public, statewide academic health system, the mission of the University of Tennessee Health Science Center is to bring the benefits of the health sciences to the achievement and maintenance of human health, with a focus on the citizens of Tennessee and the region, by pursuing an integrated program of education, research, clinical care, and public service. Founded in 1911, during its more than 100 years, UT Health Science Center has educated and trained more than 56,000 health care professionals in academic settings and health care facilities across the state.

Sara Burnett | EurekAlert!
Further information:
http://www.lebonheur.org
http://www.uthsc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>