Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds depletion of alveolar macrophages linked to bacterial super-infections

23.07.2013
A recent study published in the July issue of the Journal of Immunology helps explain why some humans contract bacterial super-infections like pneumonia with influenza.

The research was led by Le Bonheur Pediatrician-in-Chief Jon McCullers, MD – an infectious disease specialist who is also chair of the Department of Pediatrics for the University of Tennessee Health Science Center and adjunct faculty at St. Jude Children's Research Hospital.

"It's been known that the influenza virus does something to suppress host immune function, which can facilitate development of deadly secondary bacterial pneumonias," said McCullers. "But we haven't known what that was or why it happens."

McCullers' research – conducted at his National Institutes of Health-funded laboratory at St. Jude Children's Research Hospital by UTHSC graduate student Hazem Ghoneim, a PhD candidate -- used advanced techniques to differentiate types of alveolar macrophages found in the lungs and airways. Researchers found that of the three types identified, only one is truly capable of fending off secondary bacterial infection. This population of macrophages, labeled the resident alveolar macrophages, is depleted during a flu infection.

"We found that influenza is specifically killing these true alveolar macrophages," said McCullers. "The window of time someone is susceptible to secondary infections corresponds with the time it takes for the other two types of alveolar macrophages to differentiate so they are then able to fight off the infection."

McCullers says his study is a step toward developing strategies for treatment.

"This discovery provides a roadmap for developing immunotherapies that can supplement the natural defenses of our body when they are at their weakest. Influenza and pneumonia are the seventh leading cause of death in the U.S., and we desperately need research such as this to improve our armamentarium," said McCullers.

About Le Bonheur Children's Hospital

Le Bonheur Children's Hospital in Memphis, Tenn., treats more than 250,000 children each year in a 255-bed hospital that features state-of-the-art technology and family-friendly resources. Nationally recognized, Le Bonheur is ranked by U.S. News & World Report as a Best Children's Hospital. Serving as a primary teaching affiliate for the University Tennessee Health Science Center, the hospital trains more pediatricians than any other hospital in the state. For more information, please call (901) 287-6030 or visit lebonheur.org. Follow us on Twitter at twitter.com/lebonheurchild or like us at Facebook at facebook.com/lebonheurchildrens.

About the University of Tennessee Health Science Center

As Tennessee's only public, statewide academic health system, the mission of the University of Tennessee Health Science Center is to bring the benefits of the health sciences to the achievement and maintenance of human health, with a focus on the citizens of Tennessee and the region, by pursuing an integrated program of education, research, clinical care, and public service. Founded in 1911, during its more than 100 years, UT Health Science Center has educated and trained more than 56,000 health care professionals in academic settings and health care facilities across the state.

Sara Burnett | EurekAlert!
Further information:
http://www.lebonheur.org
http://www.uthsc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>