Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cost of future flood losses in major coastal cities could be over $50 billion by 2050

20.08.2013
Climate change combined with rapid population increases, economic growth and land subsidence could lead to a more than nine-fold increase in the global risk of floods in large port cities between now and 2050.

'Future Flood Losses in Major Coastal Cities', published in Nature Climate Change, is part of an ongoing project by the Organisation for Economic Co-operation and Development (OECD) to explore the policy implications of flood risks due to climate change and economic development.

This study builds on past OECD work which ranked global port cities on the basis of current and future exposure, where exposure is the maximum number of people or assets that could be affected by a flood.

The authors estimate present and future flood losses – or the global cost of flooding – in 136 of the world's largest coastal cities, taking into account existing coastal protections. Average global flood losses in 2005, estimated at about US$6 billion per year, could increase to US$52 billion by 2050 with projected socio-economic change alone.

The cities ranked most 'at risk' today, as measured by annual average losses due to floods, span developed and developing countries: Guangzhou, Miami, New York, New Orleans, Mumbai, Nagoya, Tampa-St. Petersburg, Boston, Shenzen, Osaka-Kobe, and Vancouver. The countries at greatest risk from coastal city flooding include the United States and China. Due to their high wealth and low protection level, three American cities (Miami, New York City and New Orleans) are responsible for 31 per cent of the losses across the 136 cities. Adding Guangzhou, the four top cities explain 43 per cent of global losses as of 2005.

Total dollar cost is one way to assess risk. Another is to look at annual losses as a percentage of a city's wealth, a proxy for local vulnerability. Using this measure, Guangzhou, China; Guayaquil, Ecuador; Ho Chi Minh City, Vietnam; and Abidjan, Ivory Coast are among the most vulnerable.

To estimate the impact of future climate change the study assumes that mean sea-level, including contributions from melting ice sheets, will rise 0.2-0.4 meters by 2050. In addition, about a quarter of the 136 cities are in deltas and exposed to local subsidence and local sea-level change, especially where groundwater extraction accelerate natural processes.

An important finding of this study is that, because flood defences have been designed for past conditions, even a moderate rise in sea-level would lead to soaring losses in the absence of adaptation. Inaction is not an option as it could lead to losses in excess of $US 1 trillion. Therefore, coastal cities will have to improve their flood management, including better defences, at a cost estimated around US$50 billion per year for the 136 cities.

Robert Nicholls, Professor of Coastal Engineering at the University of Southampton and co-author of the study, says: "This work shows that flood risk is rising in coastal cities globally due to a range of factors, including sea-level rise. Hence there is a pressing need to start planning how to manage flood risk now."

Even with better protection, the magnitude of losses will increase, often by more than 50 per cent, when a flood does occur. According to Dr Stephane Hallegatte, from the World Bank and lead author of the study: "There is a limit to what can be achieved with hard protection: populations and assets will remain vulnerable to defence failures or to exceptional events that exceed the protection design." To help cities deal with disasters when they do hit, policy makers should consider early warning systems, evacuation planning, more resilient infrastructure and financial support to rebuild economies.

The report also notes that large increases in port city flood risk may occur in locations that are not vulnerable today, catching citizens and governments' off-guard. The five cities with the largest estimated increase in flood risk in 2050 are Alexandria, Egypt; Barranquilla, Colombia; Naples, Italy; Sapporo, Japan; and Santo Domingo, Dominican Republic.

The abstract and full article can be downloaded from the Nature Climate Change website: http://dx.doi.org/10.1038/nclimate1979

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>