Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cost of future flood losses in major coastal cities could be over $50 billion by 2050

20.08.2013
Climate change combined with rapid population increases, economic growth and land subsidence could lead to a more than nine-fold increase in the global risk of floods in large port cities between now and 2050.

'Future Flood Losses in Major Coastal Cities', published in Nature Climate Change, is part of an ongoing project by the Organisation for Economic Co-operation and Development (OECD) to explore the policy implications of flood risks due to climate change and economic development.

This study builds on past OECD work which ranked global port cities on the basis of current and future exposure, where exposure is the maximum number of people or assets that could be affected by a flood.

The authors estimate present and future flood losses – or the global cost of flooding – in 136 of the world's largest coastal cities, taking into account existing coastal protections. Average global flood losses in 2005, estimated at about US$6 billion per year, could increase to US$52 billion by 2050 with projected socio-economic change alone.

The cities ranked most 'at risk' today, as measured by annual average losses due to floods, span developed and developing countries: Guangzhou, Miami, New York, New Orleans, Mumbai, Nagoya, Tampa-St. Petersburg, Boston, Shenzen, Osaka-Kobe, and Vancouver. The countries at greatest risk from coastal city flooding include the United States and China. Due to their high wealth and low protection level, three American cities (Miami, New York City and New Orleans) are responsible for 31 per cent of the losses across the 136 cities. Adding Guangzhou, the four top cities explain 43 per cent of global losses as of 2005.

Total dollar cost is one way to assess risk. Another is to look at annual losses as a percentage of a city's wealth, a proxy for local vulnerability. Using this measure, Guangzhou, China; Guayaquil, Ecuador; Ho Chi Minh City, Vietnam; and Abidjan, Ivory Coast are among the most vulnerable.

To estimate the impact of future climate change the study assumes that mean sea-level, including contributions from melting ice sheets, will rise 0.2-0.4 meters by 2050. In addition, about a quarter of the 136 cities are in deltas and exposed to local subsidence and local sea-level change, especially where groundwater extraction accelerate natural processes.

An important finding of this study is that, because flood defences have been designed for past conditions, even a moderate rise in sea-level would lead to soaring losses in the absence of adaptation. Inaction is not an option as it could lead to losses in excess of $US 1 trillion. Therefore, coastal cities will have to improve their flood management, including better defences, at a cost estimated around US$50 billion per year for the 136 cities.

Robert Nicholls, Professor of Coastal Engineering at the University of Southampton and co-author of the study, says: "This work shows that flood risk is rising in coastal cities globally due to a range of factors, including sea-level rise. Hence there is a pressing need to start planning how to manage flood risk now."

Even with better protection, the magnitude of losses will increase, often by more than 50 per cent, when a flood does occur. According to Dr Stephane Hallegatte, from the World Bank and lead author of the study: "There is a limit to what can be achieved with hard protection: populations and assets will remain vulnerable to defence failures or to exceptional events that exceed the protection design." To help cities deal with disasters when they do hit, policy makers should consider early warning systems, evacuation planning, more resilient infrastructure and financial support to rebuild economies.

The report also notes that large increases in port city flood risk may occur in locations that are not vulnerable today, catching citizens and governments' off-guard. The five cities with the largest estimated increase in flood risk in 2050 are Alexandria, Egypt; Barranquilla, Colombia; Naples, Italy; Sapporo, Japan; and Santo Domingo, Dominican Republic.

The abstract and full article can be downloaded from the Nature Climate Change website: http://dx.doi.org/10.1038/nclimate1979

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>