Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds copper reduces 58 percent of healthcare-acquired infections

10.04.2013
4-year study proves Antimicrobial Copper metal surfaces are capable of saving patient lives

New research has revealed that the use of Antimicrobial Copper surfaces in hospital rooms can reduce the number of healthcare-acquired infections (HAIs) by 58% as compared to patients treated in Intensive Care Units with non-copper touch surfaces.

In the United States, 1 out of every 20 hospital patients develops an HAI, resulting in an estimated 100,000 deaths per year. Although numerous strategies have been developed to decrease these infections, Antimicrobial Copper is the only strategy that works continuously, has been scientifically proven to be effective and doesn't depend on human behavior, according to a recently published study in the SHEA Journal of Infection Control and Hospital Epidemiology.

"The implications of this study are critical," said Dr. Harold Michels, Senior Vice President of the Copper Development Association (CDA). "Until now, the only attempts to reduce HAIs have required hand hygiene, increased cleaning and patient screening, which don't necessarily stop the growth of these bacteria the way copper alloy surfaces do. We now know that copper is the game-changer: it has the potential to save lives."

Intensive Care Units See the Benefit of Copper Alloys

The study, funded by the U.S. Department of Defense, was conducted in the Intensive Care Units (ICUs) of three major hospitals: The Medical University of South Carolina, Memorial Sloan-Kettering Cancer Center in New York City and the Ralph H. Johnson Veterans Affairs Medical Center in Charleston, South Carolina. To determine the impact of copper alloy surfaces on the rate of HAIs, copper-surfaced objects were placed in each ICU, where patients are at higher risk due to the severity of their illnesses, invasive procedures and frequent interaction with healthcare workers. Patients were randomly placed in available rooms with or without copper alloy surfaces, and the rates of HAIs were compared. A total of 650 patients and 16 rooms (8 copper and 8 standard) were studied between July 12, 2010 and June 14, 2011.

Results of this study, that appeared last July in the Journal of Clinical Microbiology, found that Antimicrobial Copper can continuously kill 83% of bacteria that cause HAIs within two hours, including strands resistant to antibiotics. The study compared copper to equivalent non-copper touch surfaces during active patient care between routine cleaning and sanitizing.

"Copper alloy surfaces offer an alternative way to reduce the increasing number of HAIs, without having to worry about changing healthcare worker behavior," said Dr. Michael Schmidt, Vice Chairman of Microbiology and Immunology at the Medical University of South Carolina and one of the authors of the study. "Because the antimicrobial effect is a continuous property of copper, the regrowth of deadly bacteria is significantly less on these surfaces, making a safer environment for hospital patients."

In study results, 46 patients developed an HAI, while 26 patients became colonized with MRSA or VRE. Overall, the proportion of patients who developed an HAI was significantly lower among those assigned to intensive care rooms with objects fabricated using copper alloys. There are currently hundreds of Antimicrobial Copper healthcare-related products available today, including IV poles, stretchers, tray tables and door hardware.

This study was so successful that an interdisciplinary team from UCLA began replicating this research in July 2012. The team is testing ICUs with Antimicrobial Copper at Ronald Reagan UCLA Medical Center.

For more information about Antimicrobial Copper, visit http://www.antimicrobialcopper.com.

About the Copper Development Association

The Copper Development Association Inc. is the market development, engineering and information services arm of the copper industry, chartered to enhance and expand markets for copper and its alloys in North America. Learn more on our blog. Follow us on Twitter.

About Antimicrobial Copper

Laboratory testing shows that, when cleaned regularly, Antimicrobial Copper surfaces kill greater than 99.9% of the following bacteria within 2 hours of exposure: MRSA, Vancomycin-Resistant Enterococcus faecalis (VRE), Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and E. coli O157:H7. Antimicrobial Copper surfaces are a supplement to and not a substitute for standard infection control practices and have been shown to reduce microbial contamination, but do not necessarily prevent cross contamination; users must continue to follow all current infection control practices. Health claims related to clinical trials have not been approved or reviewed by the U.S. EPA. Because many factors contribute to the risk of infection, individual results may vary.

EPA approval for public health claims. In the U.S., after many years of research, the Environmental Protection Agency (EPA) has registered more than 400 copper based alloys, such as brass and bronze, as public health antimicrobial products. Antimicrobial Copper is the only metal registered by the EPA to continuously kill bacteria that cause infections and pose a risk to human health.

Copper is the active, microbe killing ingredient. Antimicrobial Copper isn't a coating or additive, and it isn't just pure copper. It's shorthand for a host of copper based metals (or alloys) that can go head-to-head with stainless steel in terms of strength, durability and aesthetics. In addition to their antimicrobial properties, copper alloys are:

Durable & recyclable
Wear-resistant
Can stand up to harsh environments
Can retain details and finish over time
Available in a range of colors
Learn more at http://www.antimicrobialcopper.com, or follow us on Twitter at twitter.com/AntimicrobialCu.

Kathleen Fletcher | EurekAlert!
Further information:
http://www.kellencompany.com

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>