Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds copper reduces 58 percent of healthcare-acquired infections

10.04.2013
4-year study proves Antimicrobial Copper metal surfaces are capable of saving patient lives

New research has revealed that the use of Antimicrobial Copper surfaces in hospital rooms can reduce the number of healthcare-acquired infections (HAIs) by 58% as compared to patients treated in Intensive Care Units with non-copper touch surfaces.

In the United States, 1 out of every 20 hospital patients develops an HAI, resulting in an estimated 100,000 deaths per year. Although numerous strategies have been developed to decrease these infections, Antimicrobial Copper is the only strategy that works continuously, has been scientifically proven to be effective and doesn't depend on human behavior, according to a recently published study in the SHEA Journal of Infection Control and Hospital Epidemiology.

"The implications of this study are critical," said Dr. Harold Michels, Senior Vice President of the Copper Development Association (CDA). "Until now, the only attempts to reduce HAIs have required hand hygiene, increased cleaning and patient screening, which don't necessarily stop the growth of these bacteria the way copper alloy surfaces do. We now know that copper is the game-changer: it has the potential to save lives."

Intensive Care Units See the Benefit of Copper Alloys

The study, funded by the U.S. Department of Defense, was conducted in the Intensive Care Units (ICUs) of three major hospitals: The Medical University of South Carolina, Memorial Sloan-Kettering Cancer Center in New York City and the Ralph H. Johnson Veterans Affairs Medical Center in Charleston, South Carolina. To determine the impact of copper alloy surfaces on the rate of HAIs, copper-surfaced objects were placed in each ICU, where patients are at higher risk due to the severity of their illnesses, invasive procedures and frequent interaction with healthcare workers. Patients were randomly placed in available rooms with or without copper alloy surfaces, and the rates of HAIs were compared. A total of 650 patients and 16 rooms (8 copper and 8 standard) were studied between July 12, 2010 and June 14, 2011.

Results of this study, that appeared last July in the Journal of Clinical Microbiology, found that Antimicrobial Copper can continuously kill 83% of bacteria that cause HAIs within two hours, including strands resistant to antibiotics. The study compared copper to equivalent non-copper touch surfaces during active patient care between routine cleaning and sanitizing.

"Copper alloy surfaces offer an alternative way to reduce the increasing number of HAIs, without having to worry about changing healthcare worker behavior," said Dr. Michael Schmidt, Vice Chairman of Microbiology and Immunology at the Medical University of South Carolina and one of the authors of the study. "Because the antimicrobial effect is a continuous property of copper, the regrowth of deadly bacteria is significantly less on these surfaces, making a safer environment for hospital patients."

In study results, 46 patients developed an HAI, while 26 patients became colonized with MRSA or VRE. Overall, the proportion of patients who developed an HAI was significantly lower among those assigned to intensive care rooms with objects fabricated using copper alloys. There are currently hundreds of Antimicrobial Copper healthcare-related products available today, including IV poles, stretchers, tray tables and door hardware.

This study was so successful that an interdisciplinary team from UCLA began replicating this research in July 2012. The team is testing ICUs with Antimicrobial Copper at Ronald Reagan UCLA Medical Center.

For more information about Antimicrobial Copper, visit http://www.antimicrobialcopper.com.

About the Copper Development Association

The Copper Development Association Inc. is the market development, engineering and information services arm of the copper industry, chartered to enhance and expand markets for copper and its alloys in North America. Learn more on our blog. Follow us on Twitter.

About Antimicrobial Copper

Laboratory testing shows that, when cleaned regularly, Antimicrobial Copper surfaces kill greater than 99.9% of the following bacteria within 2 hours of exposure: MRSA, Vancomycin-Resistant Enterococcus faecalis (VRE), Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and E. coli O157:H7. Antimicrobial Copper surfaces are a supplement to and not a substitute for standard infection control practices and have been shown to reduce microbial contamination, but do not necessarily prevent cross contamination; users must continue to follow all current infection control practices. Health claims related to clinical trials have not been approved or reviewed by the U.S. EPA. Because many factors contribute to the risk of infection, individual results may vary.

EPA approval for public health claims. In the U.S., after many years of research, the Environmental Protection Agency (EPA) has registered more than 400 copper based alloys, such as brass and bronze, as public health antimicrobial products. Antimicrobial Copper is the only metal registered by the EPA to continuously kill bacteria that cause infections and pose a risk to human health.

Copper is the active, microbe killing ingredient. Antimicrobial Copper isn't a coating or additive, and it isn't just pure copper. It's shorthand for a host of copper based metals (or alloys) that can go head-to-head with stainless steel in terms of strength, durability and aesthetics. In addition to their antimicrobial properties, copper alloys are:

Durable & recyclable
Wear-resistant
Can stand up to harsh environments
Can retain details and finish over time
Available in a range of colors
Learn more at http://www.antimicrobialcopper.com, or follow us on Twitter at twitter.com/AntimicrobialCu.

Kathleen Fletcher | EurekAlert!
Further information:
http://www.kellencompany.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>