Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds context is key in helping us to recognize a face

13.11.2013
Why does it take longer to recognise a familiar face when seen in an unfamiliar setting, like seeing a work colleague when on holiday?

A new study published today in Nature Communications has found that part of the reason comes down to the processes that our brain performs when learning and recognising faces.

During the experiment, participants were shown faces of people that they had never seen before, while lying inside an MRI scanner in the Department of Psychology at Royal Holloway University. They were shown some of these faces numerous times from different angles and were asked to indicate whether they had seen that person before or not.

While participants were relatively good at recognising faces once they had seen them a few times, using a new mathematical approach, the scientists found that people's decisions of whether they recognised someone were also dependent on the context in which they encountered the face. If participants had recently seen lots of unfamiliar faces, they were more likely to say that the face they were looking at was unfamiliar, even if they had seen the face several times before and had previously reported that they did recognise the face.

Activity in two areas of the brain matched the way in which the mathematical model predicted people's performance.

"Our study has characterised some of the mathematical processes that are happening in our brain as we do this," said lead author Dr Matthew Apps. "One brain area, called the fusiform face area, seems to be involved in learning new information about faces and increasing their familiarity.

"Another area, called the superior temporal sulcus, we found to have an important role in influencing our report of whether we recognise someone's face, regardless of whether we are actually familiar with them or not. While this seems rather counter-intuitive, it may be an important mechanism for simplifying all the information that we need to process about faces."

"Face recognition is a fundamental social skill, but we show how error prone this process can be. To recognise someone, we become familiar with their face, by learning a little more about what it looks like," said co-author Professor Manos Tsakiris from the Department of Psychology at Royal Holloway.

"At the same time, we often see people in different contexts. The recognition biases that we measured might give us an advantage in integrating information about identity and social context, two key elements of our social world."

Tanya Gubbay | EurekAlert!
Further information:
http://www.rhul.ac.uk

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>