Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds climate change to shrink bison, profit

21.06.2013
As temperatures go up, bison get smaller.

Joseph Craine, research assistant professor in the Division of Biology at Kansas State University, examined how climate change during the next 50 years will affect grazing animals such as bison and cattle in the Great Plains. The study, "Long-term climate sensitivity of grazer performance: a cross-site study," was recently published in the peer-reviewed scientific journal PLOS ONE.


Bison roam the grasslands of the Konza Prairie Biological Station.

Credit: Kansas State University Photo Services

"Bison are one of our most important conservation animals and hold a unique role in grasslands in North America," Craine said. "In addition to their cultural and ecological significance, they're economically important both from a livestock perspective and from a tourism perspective. There are about half a million bison in the world."

Craine analyzed a data set of 290,000 weights, ages and sexes collected from 22 bison herds throughout the U.S. The information came from herds owned by the university's Konza Prairie Biological Station; Oklahoma's Nature Conservancy; Turner Enterprises; and other federal, state, nonprofit and commercial entities. The organizations kept annual records of each animal in the herd and matched the data with the climates of the sites.

Based on differences in sizes of bison across herds, Craine found that during the next 50 years, future generations of bison will be smaller in size and weigh less. Climate is likely to reduce the nutritional quality of grasses, causing the animals to grow more slowly.

"We know that temperatures are going to go up," Craine said. "We also know that warmer grasslands have grasses with less protein, and we now know that warmer grasslands have smaller grazers. It all lines up to suggest that climate change will cause grasses to have less protein and cause grazers to gain less weight in the future."

Craine said the results of climate change in coming decades can already be seen by comparing bison in cooler, wetter regions with those in warmer, drier regions. For example, the average 7-year-old male bison in South Dakota weighed 1,900 pounds, while an average 7-year-old male bison in Oklahoma -- a warmer region -- weighed 1,300 pounds. The cause: grasses in the southern Great Plains have less protein than grasses in the northern Great Plains because of the warmer climate.

"The difference in temperature between those two states is around 20 degrees Fahrenheit, which is about three times the projected increase in temperatures over the next 75 years," Craine said. "That's a pretty extreme difference and beyond the worst-case scenario. But it is a clear indicator that long-term warming will affect bison and is something that will happen across the U.S. over the next 50-75 years."

While the economic cost of smaller bison might not be so great, Craine said that warming might also shrink the revenue of cattle producers.

Although compiling and analyzing data about cattle weights has yet to be done, findings for bison may translate to the more than 90 million cattle in the U.S., Craine said. Cattle and bison share similar physiologies and weight gain for both is typically limited by protein intake.

If the same reduction in weight gain applies to cattle as bison, every temperature increase of one-and-a-half degrees Fahrenheit could cause roughly $1 billion in lost income for cattle producers, Craine said. The reduction would come from either the cost of protein supplements needed to maintain similar weight gains before climate change, or from a loss of income because of reduced weights. Scientists predict that temperatures in the U.S. will increase by 6-8 degrees Fahrenheit during the next 75 years.

The study is an offshoot of Craine's ecology research with the Konza Prairie Biological Station, which is jointly owned by The Nature Conservancy and Kansas State University. Managed by the university's Division of Biology, the Konza Prairie spans about 8,600 acres.

Joseph Craine | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>