Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds climate change to shrink bison, profit

As temperatures go up, bison get smaller.

Joseph Craine, research assistant professor in the Division of Biology at Kansas State University, examined how climate change during the next 50 years will affect grazing animals such as bison and cattle in the Great Plains. The study, "Long-term climate sensitivity of grazer performance: a cross-site study," was recently published in the peer-reviewed scientific journal PLOS ONE.

Bison roam the grasslands of the Konza Prairie Biological Station.

Credit: Kansas State University Photo Services

"Bison are one of our most important conservation animals and hold a unique role in grasslands in North America," Craine said. "In addition to their cultural and ecological significance, they're economically important both from a livestock perspective and from a tourism perspective. There are about half a million bison in the world."

Craine analyzed a data set of 290,000 weights, ages and sexes collected from 22 bison herds throughout the U.S. The information came from herds owned by the university's Konza Prairie Biological Station; Oklahoma's Nature Conservancy; Turner Enterprises; and other federal, state, nonprofit and commercial entities. The organizations kept annual records of each animal in the herd and matched the data with the climates of the sites.

Based on differences in sizes of bison across herds, Craine found that during the next 50 years, future generations of bison will be smaller in size and weigh less. Climate is likely to reduce the nutritional quality of grasses, causing the animals to grow more slowly.

"We know that temperatures are going to go up," Craine said. "We also know that warmer grasslands have grasses with less protein, and we now know that warmer grasslands have smaller grazers. It all lines up to suggest that climate change will cause grasses to have less protein and cause grazers to gain less weight in the future."

Craine said the results of climate change in coming decades can already be seen by comparing bison in cooler, wetter regions with those in warmer, drier regions. For example, the average 7-year-old male bison in South Dakota weighed 1,900 pounds, while an average 7-year-old male bison in Oklahoma -- a warmer region -- weighed 1,300 pounds. The cause: grasses in the southern Great Plains have less protein than grasses in the northern Great Plains because of the warmer climate.

"The difference in temperature between those two states is around 20 degrees Fahrenheit, which is about three times the projected increase in temperatures over the next 75 years," Craine said. "That's a pretty extreme difference and beyond the worst-case scenario. But it is a clear indicator that long-term warming will affect bison and is something that will happen across the U.S. over the next 50-75 years."

While the economic cost of smaller bison might not be so great, Craine said that warming might also shrink the revenue of cattle producers.

Although compiling and analyzing data about cattle weights has yet to be done, findings for bison may translate to the more than 90 million cattle in the U.S., Craine said. Cattle and bison share similar physiologies and weight gain for both is typically limited by protein intake.

If the same reduction in weight gain applies to cattle as bison, every temperature increase of one-and-a-half degrees Fahrenheit could cause roughly $1 billion in lost income for cattle producers, Craine said. The reduction would come from either the cost of protein supplements needed to maintain similar weight gains before climate change, or from a loss of income because of reduced weights. Scientists predict that temperatures in the U.S. will increase by 6-8 degrees Fahrenheit during the next 75 years.

The study is an offshoot of Craine's ecology research with the Konza Prairie Biological Station, which is jointly owned by The Nature Conservancy and Kansas State University. Managed by the university's Division of Biology, the Konza Prairie spans about 8,600 acres.

Joseph Craine | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>