Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cities could save billions of dollars by investing in resilience

19.04.2013
- Damages due to natural hazards increasing dramatically
- Technology as an important lever to make cities more resilient
- Arup, Regional Plan Association and Siemens present a report on resilient infrastructure

Damages caused by extreme weather phenomena are increasing around the globe. In 2012, the costs of such damages totaled approximately US$160 billion worldwide. With dense populations, cities are particularly vulnerable to natural hazards. For example, Superstorm Sandy alone was responsible for damages of some US$50 billion, mostly in the New York Metropolitan area.

To show how cities can better protect themselves against natural disasters like Sandy, Siemens has joined forces with Regional Plan Association (RPA) and the consulting firm Arup to prepare a study on resilient urban infrastructure. Results to-date show that technology is a key component of resilient and efficient infrastructure protection. Cities should integrate resilience into all aspects of their planning and normal investment and maintenance cycles. This would reduce potential damages, enhance productivity, create a safe place to live and can save billions of U.S. dollars.

“We can’t prevent natural disasters, but with our knowledge and our technologies we can better protect our infrastructures. Particularly in difficult economic times, cities have to invest efficiently while minimizing risks and making them calculable. Resilient infrastructure is not an option but a must. What you get is a city that is better protected and at the same time more efficient and reliable!” said Roland Busch, CEO of Siemens’ Infrastructure & Cities Sector and member of the executive board of Siemens AG, at the presentation of the report’s initial results in New York City.

The report shows that only repairing damaged infrastructures without incorporating resiliency measures is extremely cost-intensive. Investments in resilient solutions, on the other hand, not only protect against damage, but also make urban infrastructure more cost-efficient, energy-efficient and reliable. Initial calculations based on a study of New York City’s power grid show that – without protective measures – the repair costs of natural disasters like Sandy could reach up to US$3 billion over the next 20 years. However, investing this same amount in measures to protect against wind and flood and in technologies that make power grids more robust, flexible and smarter can actually reduce damage by up to US$2 billion and also generate efficiency gains of about US$4 billion due to enhanced grid availability, stability and energy efficiency.

Co-op City in the Bronx, a residential development with 14,000 apartments and an independent power grid, is a prime example of how a proactive resilient infrastructure proved its worth during Superstorm Sandy. Electricity for the district is generated by an on-site 40-megawatt combined heat and power plant. When Sandy hit, Co-op City was not affected by the power cuts experienced by the rest of New York.

Siemens has a broad portfolio for urban infrastructure that helps cities become more resilient and sustainable. Solutions like smart grids and software solutions for rail automation, traffic management, evacuation management and building management systems contribute the most to minimizing the impact of natural hazards primarily because intelligent automation of infrastructures is a key success factor in making systems more flexible and easier to control and coordinate.

The need for investment in resilient infrastructures is increasing due to the growing hazards posed by extreme weather phenomena. In the last 40 years, the frequency and strength of natural disasters have risen considerably. According to the United Nations, the number of major hazards in the first decade of the new millennium is more than twice as high as between 1980 and 1989. Experts attribute the increase in the number and impact of natural disasters to climate change. A growing world population aggregated more and more in cities is increasing the potential for damage many times over due to the resulting urban density.

The advantages of resilient infrastructure able to withstand natural hazards and disasters are obvious. First, resilient cities are better equipped to recover quickly during and after crises. Second, robust infrastructures are generally more resource efficient, powerful and reliable. And third, resilient technologies stabilize the operation of the most important systems – especially during a crisis.

Further information on Resilient Cities is available at www.siemens.com/press/resilient-infrastructure

Contact
Mr. Alexander Becker
Siemens AG
Wittelsbacherplatz 2
80333 Munich
Germany
Tel: +49 (89) 636-36558
becker.alexander@siemens.com

Alexander Becker | Siemens AG
Further information:
http://www.siemens.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>