Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cities could save billions of dollars by investing in resilience

19.04.2013
- Damages due to natural hazards increasing dramatically
- Technology as an important lever to make cities more resilient
- Arup, Regional Plan Association and Siemens present a report on resilient infrastructure

Damages caused by extreme weather phenomena are increasing around the globe. In 2012, the costs of such damages totaled approximately US$160 billion worldwide. With dense populations, cities are particularly vulnerable to natural hazards. For example, Superstorm Sandy alone was responsible for damages of some US$50 billion, mostly in the New York Metropolitan area.

To show how cities can better protect themselves against natural disasters like Sandy, Siemens has joined forces with Regional Plan Association (RPA) and the consulting firm Arup to prepare a study on resilient urban infrastructure. Results to-date show that technology is a key component of resilient and efficient infrastructure protection. Cities should integrate resilience into all aspects of their planning and normal investment and maintenance cycles. This would reduce potential damages, enhance productivity, create a safe place to live and can save billions of U.S. dollars.

“We can’t prevent natural disasters, but with our knowledge and our technologies we can better protect our infrastructures. Particularly in difficult economic times, cities have to invest efficiently while minimizing risks and making them calculable. Resilient infrastructure is not an option but a must. What you get is a city that is better protected and at the same time more efficient and reliable!” said Roland Busch, CEO of Siemens’ Infrastructure & Cities Sector and member of the executive board of Siemens AG, at the presentation of the report’s initial results in New York City.

The report shows that only repairing damaged infrastructures without incorporating resiliency measures is extremely cost-intensive. Investments in resilient solutions, on the other hand, not only protect against damage, but also make urban infrastructure more cost-efficient, energy-efficient and reliable. Initial calculations based on a study of New York City’s power grid show that – without protective measures – the repair costs of natural disasters like Sandy could reach up to US$3 billion over the next 20 years. However, investing this same amount in measures to protect against wind and flood and in technologies that make power grids more robust, flexible and smarter can actually reduce damage by up to US$2 billion and also generate efficiency gains of about US$4 billion due to enhanced grid availability, stability and energy efficiency.

Co-op City in the Bronx, a residential development with 14,000 apartments and an independent power grid, is a prime example of how a proactive resilient infrastructure proved its worth during Superstorm Sandy. Electricity for the district is generated by an on-site 40-megawatt combined heat and power plant. When Sandy hit, Co-op City was not affected by the power cuts experienced by the rest of New York.

Siemens has a broad portfolio for urban infrastructure that helps cities become more resilient and sustainable. Solutions like smart grids and software solutions for rail automation, traffic management, evacuation management and building management systems contribute the most to minimizing the impact of natural hazards primarily because intelligent automation of infrastructures is a key success factor in making systems more flexible and easier to control and coordinate.

The need for investment in resilient infrastructures is increasing due to the growing hazards posed by extreme weather phenomena. In the last 40 years, the frequency and strength of natural disasters have risen considerably. According to the United Nations, the number of major hazards in the first decade of the new millennium is more than twice as high as between 1980 and 1989. Experts attribute the increase in the number and impact of natural disasters to climate change. A growing world population aggregated more and more in cities is increasing the potential for damage many times over due to the resulting urban density.

The advantages of resilient infrastructure able to withstand natural hazards and disasters are obvious. First, resilient cities are better equipped to recover quickly during and after crises. Second, robust infrastructures are generally more resource efficient, powerful and reliable. And third, resilient technologies stabilize the operation of the most important systems – especially during a crisis.

Further information on Resilient Cities is available at www.siemens.com/press/resilient-infrastructure

Contact
Mr. Alexander Becker
Siemens AG
Wittelsbacherplatz 2
80333 Munich
Germany
Tel: +49 (89) 636-36558
becker.alexander@siemens.com

Alexander Becker | Siemens AG
Further information:
http://www.siemens.com

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>