Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cities could save billions of dollars by investing in resilience

19.04.2013
- Damages due to natural hazards increasing dramatically
- Technology as an important lever to make cities more resilient
- Arup, Regional Plan Association and Siemens present a report on resilient infrastructure

Damages caused by extreme weather phenomena are increasing around the globe. In 2012, the costs of such damages totaled approximately US$160 billion worldwide. With dense populations, cities are particularly vulnerable to natural hazards. For example, Superstorm Sandy alone was responsible for damages of some US$50 billion, mostly in the New York Metropolitan area.

To show how cities can better protect themselves against natural disasters like Sandy, Siemens has joined forces with Regional Plan Association (RPA) and the consulting firm Arup to prepare a study on resilient urban infrastructure. Results to-date show that technology is a key component of resilient and efficient infrastructure protection. Cities should integrate resilience into all aspects of their planning and normal investment and maintenance cycles. This would reduce potential damages, enhance productivity, create a safe place to live and can save billions of U.S. dollars.

“We can’t prevent natural disasters, but with our knowledge and our technologies we can better protect our infrastructures. Particularly in difficult economic times, cities have to invest efficiently while minimizing risks and making them calculable. Resilient infrastructure is not an option but a must. What you get is a city that is better protected and at the same time more efficient and reliable!” said Roland Busch, CEO of Siemens’ Infrastructure & Cities Sector and member of the executive board of Siemens AG, at the presentation of the report’s initial results in New York City.

The report shows that only repairing damaged infrastructures without incorporating resiliency measures is extremely cost-intensive. Investments in resilient solutions, on the other hand, not only protect against damage, but also make urban infrastructure more cost-efficient, energy-efficient and reliable. Initial calculations based on a study of New York City’s power grid show that – without protective measures – the repair costs of natural disasters like Sandy could reach up to US$3 billion over the next 20 years. However, investing this same amount in measures to protect against wind and flood and in technologies that make power grids more robust, flexible and smarter can actually reduce damage by up to US$2 billion and also generate efficiency gains of about US$4 billion due to enhanced grid availability, stability and energy efficiency.

Co-op City in the Bronx, a residential development with 14,000 apartments and an independent power grid, is a prime example of how a proactive resilient infrastructure proved its worth during Superstorm Sandy. Electricity for the district is generated by an on-site 40-megawatt combined heat and power plant. When Sandy hit, Co-op City was not affected by the power cuts experienced by the rest of New York.

Siemens has a broad portfolio for urban infrastructure that helps cities become more resilient and sustainable. Solutions like smart grids and software solutions for rail automation, traffic management, evacuation management and building management systems contribute the most to minimizing the impact of natural hazards primarily because intelligent automation of infrastructures is a key success factor in making systems more flexible and easier to control and coordinate.

The need for investment in resilient infrastructures is increasing due to the growing hazards posed by extreme weather phenomena. In the last 40 years, the frequency and strength of natural disasters have risen considerably. According to the United Nations, the number of major hazards in the first decade of the new millennium is more than twice as high as between 1980 and 1989. Experts attribute the increase in the number and impact of natural disasters to climate change. A growing world population aggregated more and more in cities is increasing the potential for damage many times over due to the resulting urban density.

The advantages of resilient infrastructure able to withstand natural hazards and disasters are obvious. First, resilient cities are better equipped to recover quickly during and after crises. Second, robust infrastructures are generally more resource efficient, powerful and reliable. And third, resilient technologies stabilize the operation of the most important systems – especially during a crisis.

Further information on Resilient Cities is available at www.siemens.com/press/resilient-infrastructure

Contact
Mr. Alexander Becker
Siemens AG
Wittelsbacherplatz 2
80333 Munich
Germany
Tel: +49 (89) 636-36558
becker.alexander@siemens.com

Alexander Becker | Siemens AG
Further information:
http://www.siemens.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>