Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds chronic abnormal brain blood flow in Gulf War veterans

13.09.2011
Blood flow abnormalities found in the brains of veterans with Gulf War illness have persisted 20 years after the war, and in some cases have gotten worse, according to a new study published online in the journal Radiology.

"We confirmed that abnormal blood flow continued or worsened over the 11-year span since first being diagnosed, which indicates that the damage is ongoing and lasts long term," said principal investigator Robert W. Haley, M.D., chief of epidemiology in the Departments of Internal Medicine and Clinical Sciences at the University of Texas (UT) Southwestern Medical Center in Dallas. "We also identified a special MRI procedure that better diagnoses and distinguishes between the three main types of Gulf War illness."

Gulf War illness is a poorly understood chronic condition associated with exposure to neurotoxic chemicals and nerve gas. It affects an estimated 25 percent of the 700,000 military personnel deployed to the 1991 Persian Gulf War, according to the U.S. Department of Veterans Affairs' scientific advisory committee.

There are three main syndromes associated with Gulf War illness, producing a variety of symptoms, including fatigue, neuropathic pain, memory and concentration deficits, balance disturbances and depression.

The hippocampus is the part of the brain responsible for forming long-term memories and helping with spatial navigation. Many Gulf War illness neurological symptoms, such as memory loss, confusion, irritability and disorders in motion control suggest impairment of the hippocampus.

In 1998, Dr. Haley's research team published a study using single photon emission computed tomography (SPECT) to assess hippocampal blood flow in veterans with Gulf War Syndrome. For the current study, the researchers used a novel technique called arterial spin labeled (ASL) MRI to assess hippocampal regional cerebral blood flow (rCBF) in 13 control participants and 35 patients with Gulf War syndromes 1 (impaired cognition), 2 (confusion-ataxia) and 3 (central neuropathic pain).

Each patient received intravenous infusions of saline in an initial session, and physostigmine in a second session 48 hours later. Physostigmine is a short-acting cholinesterase inhibitor, used to test the functional integrity of the cholinergic system, a neurotransmitter system involved in the regulation of memory and learning.

"ASL scanning after giving this medication is particularly well suited to diagnosing Gulf War illness, because it picks up brain abnormalities too subtle for regular MRI to detect," said co-author Richard W. Briggs, Ph.D., professor of radiology at UT Southwestern. "This allows us to make the diagnosis in a single two-hour session without the need for exposure to ionizing radiation."

The findings replicated the results of the initial SPECT study of largely the same group of veterans. The results showed that abnormal hippocampal blood flow persisted and may have progressed 11 years after initial testing and nearly 20 years after the Gulf War, suggesting chronic alteration of hippocampal blood flow.

Physostigmine significantly decreased rCBF in control participants and veterans with syndrome 1, but significantly increased rCBF in the right hippocampus of veterans with syndrome 2 in the original study. The abnormal increase in rCBF was now found to have progressed to the left hippocampus with syndrome 2 and to both hippocampi of the veterans with syndrome 3.

"Having an objective diagnostic test allows researchers to identify ill veterans for future clinical trials to test possible treatments," Dr. Haley said. "It is also critical for ongoing genomic studies to see why some people are affected by chemical exposures, and why others are not."

"Hippocampal Dysfunction in Gulf War Veterans: Investigation with ASL Perfusion MR Imaging and Physostigmine Challenge." Collaborating with Drs. Haley and Briggs on this paper were Xiufeng Li, Ph.D., Jeffrey S. Spence, Ph.D., David M. Buhner, M.D., M.S., John Hart Jr., M.D., C. Munro Cullum, Ph.D., Melanie M. Biggs, Ph.D., Andrea L. Hester, Ph.D., Timothy N. Odegard, Ph.D., and Patrick S. Carmack, Ph.D. The study was funded by a federal research contract administered by the Department of Veterans Affairs Medical Center, Dallas, Texas, and grants from the U.S. Army Medical Research and Materiel Command and the National Institutes of Health.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on magnetic resonance imaging (MRI), visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>