Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds chronic abnormal brain blood flow in Gulf War veterans

13.09.2011
Blood flow abnormalities found in the brains of veterans with Gulf War illness have persisted 20 years after the war, and in some cases have gotten worse, according to a new study published online in the journal Radiology.

"We confirmed that abnormal blood flow continued or worsened over the 11-year span since first being diagnosed, which indicates that the damage is ongoing and lasts long term," said principal investigator Robert W. Haley, M.D., chief of epidemiology in the Departments of Internal Medicine and Clinical Sciences at the University of Texas (UT) Southwestern Medical Center in Dallas. "We also identified a special MRI procedure that better diagnoses and distinguishes between the three main types of Gulf War illness."

Gulf War illness is a poorly understood chronic condition associated with exposure to neurotoxic chemicals and nerve gas. It affects an estimated 25 percent of the 700,000 military personnel deployed to the 1991 Persian Gulf War, according to the U.S. Department of Veterans Affairs' scientific advisory committee.

There are three main syndromes associated with Gulf War illness, producing a variety of symptoms, including fatigue, neuropathic pain, memory and concentration deficits, balance disturbances and depression.

The hippocampus is the part of the brain responsible for forming long-term memories and helping with spatial navigation. Many Gulf War illness neurological symptoms, such as memory loss, confusion, irritability and disorders in motion control suggest impairment of the hippocampus.

In 1998, Dr. Haley's research team published a study using single photon emission computed tomography (SPECT) to assess hippocampal blood flow in veterans with Gulf War Syndrome. For the current study, the researchers used a novel technique called arterial spin labeled (ASL) MRI to assess hippocampal regional cerebral blood flow (rCBF) in 13 control participants and 35 patients with Gulf War syndromes 1 (impaired cognition), 2 (confusion-ataxia) and 3 (central neuropathic pain).

Each patient received intravenous infusions of saline in an initial session, and physostigmine in a second session 48 hours later. Physostigmine is a short-acting cholinesterase inhibitor, used to test the functional integrity of the cholinergic system, a neurotransmitter system involved in the regulation of memory and learning.

"ASL scanning after giving this medication is particularly well suited to diagnosing Gulf War illness, because it picks up brain abnormalities too subtle for regular MRI to detect," said co-author Richard W. Briggs, Ph.D., professor of radiology at UT Southwestern. "This allows us to make the diagnosis in a single two-hour session without the need for exposure to ionizing radiation."

The findings replicated the results of the initial SPECT study of largely the same group of veterans. The results showed that abnormal hippocampal blood flow persisted and may have progressed 11 years after initial testing and nearly 20 years after the Gulf War, suggesting chronic alteration of hippocampal blood flow.

Physostigmine significantly decreased rCBF in control participants and veterans with syndrome 1, but significantly increased rCBF in the right hippocampus of veterans with syndrome 2 in the original study. The abnormal increase in rCBF was now found to have progressed to the left hippocampus with syndrome 2 and to both hippocampi of the veterans with syndrome 3.

"Having an objective diagnostic test allows researchers to identify ill veterans for future clinical trials to test possible treatments," Dr. Haley said. "It is also critical for ongoing genomic studies to see why some people are affected by chemical exposures, and why others are not."

"Hippocampal Dysfunction in Gulf War Veterans: Investigation with ASL Perfusion MR Imaging and Physostigmine Challenge." Collaborating with Drs. Haley and Briggs on this paper were Xiufeng Li, Ph.D., Jeffrey S. Spence, Ph.D., David M. Buhner, M.D., M.S., John Hart Jr., M.D., C. Munro Cullum, Ph.D., Melanie M. Biggs, Ph.D., Andrea L. Hester, Ph.D., Timothy N. Odegard, Ph.D., and Patrick S. Carmack, Ph.D. The study was funded by a federal research contract administered by the Department of Veterans Affairs Medical Center, Dallas, Texas, and grants from the U.S. Army Medical Research and Materiel Command and the National Institutes of Health.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on magnetic resonance imaging (MRI), visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>