Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds children's activity levels not influenced by more PE time in school

11.05.2009
Amsterdam, the Netherlands: Scheduling more physical education time in schools does not mean children will increase their activity levels, suggests new research that discovered those who got lots of timetabled exercise at school compensated by doing less at home while those who got little at school made up for it by being more active at home.

The scientists, who presented their research Thursday at the European Congress on Obesity, found that the total weekly physical activity among children attending different schools was much the same despite large differences in the amount of time allocated to PE.

The researchers propose it's not the environment that drives physical activity levels in children, but some form of central control in the brain similar to appetite – an 'activitystat'.

"These findings have implications for anti-obesity policies because they challenge the assumption that creating more opportunity for children to be active – by providing more playgrounds, sports facilities and more physical education time in schools – will mean more physical activity," said the study's analyst, Alissa Frémeaux, a biostatistician at Peninsula College of Medicine and Dentistry in Plymouth, UK. "If health strategists want to alter the physical activity of children, it is important that they first understand what controls it."

The researchers studied 206 children from three primary schools (age 7 years) with widely different amounts of timetabled physical education. Children attending one school got on average 9.2 hours a week of scheduled PE, while those at the second school got 2.4 hours a week and those at the third got just 1.7 hours in a week.

The study is the first to track the school activity patterns of children repeatedly over a long period of time using accelerometers, gadgets that record clock time and duration as well as intensity of activity. The children wore the accelerometer – the gold standard for measuring physical activity in large population studies - all day, every day for 7 days during each of four consecutive school terms. The researchers analysed the intensity and amount of in-school physical activity, out-of-school activity and the amount of total weekly physical activity. Body measurements for body composition and blood samples for metabolic health were also taken for each child. The results were adjusted for age, gender, daylight hours and rainfall.

The researchers found that although the children attending the high-PE school did 40% more activity during school hours than the other children, their total weekly activity was no different from the others.

"There was, of course, a range in the amount of activity the children did at each school, but the range and it's average were the same regardless of what school they went to. We discovered that the children who got a lot of PE time at school were compensating by doing less at home, while those who got very little PE time compensated by cranking up their activity at home, so that over the week, they all accumulated the same amount," Frémeaux said. "We believe the range of activity among children, from the slothful to the hyperactive, reflects not the range in environmental opportunities, but the range of individual activity set-points in the brains of children."

Frémeaux pointed out that rodent experiments, as well as other observations in children and adults such as the same physical activity level in people from different geographical regions and between weekend and weekdays, lend support to the activitystat theory.

Frémeaux concluded: "There is plenty of evidence that the opportunities for children to be active have changed over recent years, but we cannot find the evidence that more opportunity means more activity."

Reference no: T1:PO.76, poster presentation, Hall 3, 0800 hrs CET Thursday – 14.30 hrs CET Saturday.

Emma Ross | EurekAlert!
Further information:
http://www.easo.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>