Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds children's activity levels not influenced by more PE time in school

11.05.2009
Amsterdam, the Netherlands: Scheduling more physical education time in schools does not mean children will increase their activity levels, suggests new research that discovered those who got lots of timetabled exercise at school compensated by doing less at home while those who got little at school made up for it by being more active at home.

The scientists, who presented their research Thursday at the European Congress on Obesity, found that the total weekly physical activity among children attending different schools was much the same despite large differences in the amount of time allocated to PE.

The researchers propose it's not the environment that drives physical activity levels in children, but some form of central control in the brain similar to appetite – an 'activitystat'.

"These findings have implications for anti-obesity policies because they challenge the assumption that creating more opportunity for children to be active – by providing more playgrounds, sports facilities and more physical education time in schools – will mean more physical activity," said the study's analyst, Alissa Frémeaux, a biostatistician at Peninsula College of Medicine and Dentistry in Plymouth, UK. "If health strategists want to alter the physical activity of children, it is important that they first understand what controls it."

The researchers studied 206 children from three primary schools (age 7 years) with widely different amounts of timetabled physical education. Children attending one school got on average 9.2 hours a week of scheduled PE, while those at the second school got 2.4 hours a week and those at the third got just 1.7 hours in a week.

The study is the first to track the school activity patterns of children repeatedly over a long period of time using accelerometers, gadgets that record clock time and duration as well as intensity of activity. The children wore the accelerometer – the gold standard for measuring physical activity in large population studies - all day, every day for 7 days during each of four consecutive school terms. The researchers analysed the intensity and amount of in-school physical activity, out-of-school activity and the amount of total weekly physical activity. Body measurements for body composition and blood samples for metabolic health were also taken for each child. The results were adjusted for age, gender, daylight hours and rainfall.

The researchers found that although the children attending the high-PE school did 40% more activity during school hours than the other children, their total weekly activity was no different from the others.

"There was, of course, a range in the amount of activity the children did at each school, but the range and it's average were the same regardless of what school they went to. We discovered that the children who got a lot of PE time at school were compensating by doing less at home, while those who got very little PE time compensated by cranking up their activity at home, so that over the week, they all accumulated the same amount," Frémeaux said. "We believe the range of activity among children, from the slothful to the hyperactive, reflects not the range in environmental opportunities, but the range of individual activity set-points in the brains of children."

Frémeaux pointed out that rodent experiments, as well as other observations in children and adults such as the same physical activity level in people from different geographical regions and between weekend and weekdays, lend support to the activitystat theory.

Frémeaux concluded: "There is plenty of evidence that the opportunities for children to be active have changed over recent years, but we cannot find the evidence that more opportunity means more activity."

Reference no: T1:PO.76, poster presentation, Hall 3, 0800 hrs CET Thursday – 14.30 hrs CET Saturday.

Emma Ross | EurekAlert!
Further information:
http://www.easo.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>