Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds how brain remembers single events

Brief experiences activate neurons, genes as effectively as repetitive activities

Single events account for many of our most vivid memories – a marriage proposal, a wedding toast, a baby’s birth. Until a recent UC Irvine discovery, however, scientists knew little about what happens inside the brain that allows you to remember such events.

In a study with rats, neuroscientist John Guzowski and colleagues found that a single brief experience was as effective at activating neurons and genes associated with memory as more repetitive activities.

Knowing how the brain remembers one-time events can help scientists design better therapies for diseases such as Alzheimer’s in which the ability to form such memories is impaired.

“Most experiences in life are encounters defined by places, people, things and times. They are specific, and they happen once,” says Guzowski, UCI neurobiology and behavior assistant professor. “This type of memory is what makes each person unique.”

It is well known that a brain structure called the hippocampus is critical to memory and learning, but many questions exist about how brief experiences trigger the physical changes necessary for memory. In his study, Guzowski set out to learn how neurons in the hippocampus react to single events – particularly in the CA3 region, which is thought to be most critical for single-event memory.

Guzowski and postdoctoral researcher Teiko Miyashita put groups of rats on a rectangular track. Some rats took one lap; others did multiple laps. Inspecting the brains of rats that took one lap, they found that 10-15 percent of neurons in the CA3 region activated. The same percentage of CA3 neurons fired in the brains of rats that walked multiple laps.

Though previous computer simulations predicted that brief and repetitive experiences would activate CA3 neurons similarly, this is the first study to actually show that is the case.

Miyashita and Guzowski arrived at the percentages by examining the activation of a gene called “Arc” within hippocampal neurons. Past studies have shown that turning on Arc is required to convert experience into long-term memory.

“Together with our past findings, this study provides key insight into how fleeting experiences can be captured by the brain to form lasting memories,” Guzowski says.

Arc activation is disrupted in mouse models of mental retardation and Alzheimer’s disease.

“Our findings on Arc regulation in CA3 neurons should prove useful to researchers testing new therapies for Alzheimer’s disease,” Guzowski says. “If you understand how the hippocampus works, it is much easier to understand and potentially treat diseases that affect memory.”

UCI researchers Stepan Kubik, Nahideh Haghighi and Oswald Steward also worked on this study, published in The Journal of Neuroscience. The National Institutes of Health supported this research.

About the University of California, Irvine: UCI is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>