Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds how brain remembers single events

Brief experiences activate neurons, genes as effectively as repetitive activities

Single events account for many of our most vivid memories – a marriage proposal, a wedding toast, a baby’s birth. Until a recent UC Irvine discovery, however, scientists knew little about what happens inside the brain that allows you to remember such events.

In a study with rats, neuroscientist John Guzowski and colleagues found that a single brief experience was as effective at activating neurons and genes associated with memory as more repetitive activities.

Knowing how the brain remembers one-time events can help scientists design better therapies for diseases such as Alzheimer’s in which the ability to form such memories is impaired.

“Most experiences in life are encounters defined by places, people, things and times. They are specific, and they happen once,” says Guzowski, UCI neurobiology and behavior assistant professor. “This type of memory is what makes each person unique.”

It is well known that a brain structure called the hippocampus is critical to memory and learning, but many questions exist about how brief experiences trigger the physical changes necessary for memory. In his study, Guzowski set out to learn how neurons in the hippocampus react to single events – particularly in the CA3 region, which is thought to be most critical for single-event memory.

Guzowski and postdoctoral researcher Teiko Miyashita put groups of rats on a rectangular track. Some rats took one lap; others did multiple laps. Inspecting the brains of rats that took one lap, they found that 10-15 percent of neurons in the CA3 region activated. The same percentage of CA3 neurons fired in the brains of rats that walked multiple laps.

Though previous computer simulations predicted that brief and repetitive experiences would activate CA3 neurons similarly, this is the first study to actually show that is the case.

Miyashita and Guzowski arrived at the percentages by examining the activation of a gene called “Arc” within hippocampal neurons. Past studies have shown that turning on Arc is required to convert experience into long-term memory.

“Together with our past findings, this study provides key insight into how fleeting experiences can be captured by the brain to form lasting memories,” Guzowski says.

Arc activation is disrupted in mouse models of mental retardation and Alzheimer’s disease.

“Our findings on Arc regulation in CA3 neurons should prove useful to researchers testing new therapies for Alzheimer’s disease,” Guzowski says. “If you understand how the hippocampus works, it is much easier to understand and potentially treat diseases that affect memory.”

UCI researchers Stepan Kubik, Nahideh Haghighi and Oswald Steward also worked on this study, published in The Journal of Neuroscience. The National Institutes of Health supported this research.

About the University of California, Irvine: UCI is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>