Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds autistics better at problem-solving

18.06.2009
University of Montreal and Harvard University research in Human Brain Mapping

Autistics are up to 40 percent faster at problem-solving than non-autistics, according to a new Université de Montréal and Harvard University study published in the journal Human Brain Mapping. As part of the investigation, participants were asked to complete patterns in the Raven's Standard Progressive Matrices (RSPM) – test that measures hypothesis-testing, problem-solving and learning skills.

"While both groups performed RSPM test with equal accuracy, the autistic group responded more quickly and appeared to use perceptual regions of the brain to accelerate problem-solving," says lead author Isabelle Soulières, a post-doctoral fellow at Harvard University who completed the experiment at the Université de Montréal. "Some critics agued that autistics would be unable to complete the RSPM because of its complexity, yet our study shows autistics complete it as efficiently and have a more highly developed perception than non-autistics."

Fifteen autistics and 18 non-autistics were recruited for the study. Participants were 14 to 36 years old and matched according to their preliminary results on the Wechsler Adult Intelligence Scale. All subjects underwent magnetic resonance imaging to explore their neural activity during RSPM problem-solving. While autism is a common neurodevelopmental disability characterized by profound differences in information processing and analysis, this study showed that autistics have efficient reasoning abilities that build on their perceptual strengths.

"This study builds on our previous findings and should help educators capitalize on the intellectual abilities of autistics," says senior researcher Laurent Mottron, the new Marcel & Rolande Gosselin Research Chair in Autism Cognitive Neuroscience of the Université de Montréal and psychiatry professor. "The limits of autistics should constantly be pushed and their educational materials should never be simplified."

Adds Dr. Soulières: "The Raven's Standard Progressive Matrices are among the most complex tests to provide insight on how a person understands and formulates rules, manages goal hierarchies and performs high-level abstractions. Our wager was that autistics could complete such a test and they surpassed our expectations."

About the study:
The study, "Enhanced Visual Processing Contributes to Matrix Reasoning in Autism, published in the journal Human Brain Mapping, was authored by Isabelle Soulières, Gary E. Strangman, Cherif Sahyoun and Thomas A. Zeffiro of the Harvard University and Laurent Mottron, Michelle Dawson, Fabienne Samson and Elise B. Barbeau of the Université de Montréal.
Partners in research:
This study was funded by the Canadian Institutes of Health Research and Autism Speaks.
On the Web:
About the cited article: http://www3.interscience.wiley.com/cgi-bin/fulltext/122456693/HTMLSTART
About the Université de Montréal: www.umontreal.ca/english/index.htm
About the Harvard Medical School: http://hms.harvard.edu/hms/home.asp
About Isabelle Soulières: www.nmr.mgh.harvard.edu/martinos/people/showPerson.php?people_id=747

About Laurent Mottron: www.lnc-autisme.umontreal.ca

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>