Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds aggressive glycemic control in diabetic cabg patients does not improve survival

28.09.2011
Surgeons from Boston Medical Center (BMC) have found that in diabetic patients undergoing coronary artery bypass graft (CABG) surgery, aggressive glycemic control does not result in any significant improvement of clinical outcomes as compared with moderate control. The findings, which appear in this month's issue of Annals of Surgery, also found the incidence of hypoglycemic events increased with aggressive glycemic control.

Currently, 40 percent of all patients undergoing CABG suffer from diabetes, and this number is quickly rising. Traditionally these patients have more complications following surgery, including greater risk of heart attacks, more wound infections and reduced long-term survival.

Maintaining serum glucose between 120-180 mg/dl with continuous insulin infusions decreases morbidity in diabetic patients undergoing CABG. Prior studies in surgical patients requiring prolonged ventilation suggest that aggressive glycemic control (less than 120 mg/dl) may improve survival. However, its effect in diabetic CABG patients is unknown.

Eighty-two diabetic patients undergoing CABG were prospectively randomized to receive either aggressive glycemic control or moderate glycemic control using continuous intravenous insulin solutions beginning at anesthesia and continuing for 18 hours after surgery.

According to BMC cardiothoracic surgeon Harold Lazar, MD, who authored the presentation, there was no difference in the incidence of major adverse effects between the two groups. "Aggressive glycemic control did not result in any significant improvement of clinical outcomes than can be achieved with moderate control," said Lazar, who is also a professor of cardiothoracic surgery at Boston University School of Medicine "Although aggressive glycemic control did increase the incidence of hypoglycemic events, it did not result in an increased incidence of neurological events," he added.

Boston Medical Center is a private, not-for-profit, 639-licensed bed, academic medical center that is the primary teaching affiliate of Boston University School of Medicine. Committed to providing high-quality health care to all, the hospital offers a full spectrum of pediatric and adult care services including primary and family medicine and advanced specialty care with an emphasis on community-based care. Boston Medical Center offers specialized care for complex health problems and is a leading research institution. Boston Medical Center and Boston University School of Medicine are partners in the Boston HealthNet—15 community health centers focused on providing exceptional health care to residents of Boston. For more information, please visit www.bmc.org

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>