Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Age-Related Effects in MS may be Reversible

09.01.2012
Proof-of-principle study provides hope for stimulating remyelination

Scientists at Joslin Diabetes Center, Harvard University, and the University of Cambridge have found that the age-related impairment of the body’s ability to replace protective myelin sheaths, which normally surround nerve fibers and allow them to send signals properly, may be reversible, offering new hope that therapeutic strategies aimed at restoring efficient regeneration can be effective in the central nervous system throughout life.

In a proof-of-principle study published in the journal Cell Stem Cell, the researchers report that defects in the regeneration of the myelin sheaths surrounding nerves, which are lost in diseases such as multiple sclerosis may be at least partially corrected following exposure of an old animal to the circulatory system of a young animal. Myelin is a fatty substance that protects nerves and aids in the quick transmission of signals between nerve cells.

Using a surgical technique, the researchers introduced an experimental demyelinating injury in the spinal cord of an old mouse, creating small areas of myelin loss, and then exposed those areas to cells found the blood of a young mouse. By doing so, they found that the influx of certain immune cells, called macrophages, from the young mouse helped resident stem cells restore effective remyelination in the old mouse’s spinal cord. This “rejuvenating” effect of young immune cells was mediated in part by the greater efficiency of the young cells in clearing away myelin debris created by the demyelinating injury. Prior studies have shown that this debris impedes the regeneration of myelin.

“Aging impairs regenerative potential in the central nervous system,” says author Amy J. Wagers, PhD, an associate professor of stem cell and regenerative biology at Harvard University and Joslin, who co-led the study with Professor Robin Franklin, director of the MS Society’s Cambridge Centre for Myelin Repair at the University of Cambridge. “This impairment can be reversed, however, suggesting that the eventual development of cell-based or drug-based interventions that mimic the rejuvenation signals found in our study could be used therapeutically.”

This could be particularly useful, she adds, in treating MS, which typically spans many decades of life, and thus is likely to be influenced by age-dependent reductions in the ability of myelin to regenerate. In MS, the body’s own immune system attacks the myelin sheath and prevents nerve fibers in the brain from sending signals properly, which can cause mild symptoms such as limb numbness or more serious ones like losing the ability to walk or speak. As people with MS age, remyelination decreases significantly, eventually causing permanent loss of nerve fibers.

“For MS sufferers,” says Franklin, “this means that, in theory, regenerative therapies will work throughout the duration of the disease. Specifically, it means that remyelination therapies do not need to be based on stem cell transplantation since the stem cells already present in the brain and spinal cord can be made to regenerate myelin, regardless of a person’s age.”

Other Joslin co-authors of the study were Tata Nageswara Rao and Jennifer L. Shadrach.

About Joslin Diabetes Center

Joslin Diabetes Center, located in Boston, Massachusetts, is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

For more information about Joslin, visit www.joslin.org.

Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html,

Become a fan of Joslin on Facebook at www.facebook.com/joslindiabetes

Follow Joslin on Twitter @JoslinDiabetes

Jeffrey Bright | Newswise Science News
Further information:
http://www.joslin.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>