Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds abnormalities in cerebral cortex of cocaine addicts

Changes in cortical thickness correlate with a primary feature of addiction, could reflect both predisposition and effects of drug exposure

A brain imaging study carried out at Massachusetts General Hospital (MGH) reveals abnormalities in the cortex – the outer surface of the brain – of cocaine addicts that appear to correlate with dysfunction in areas responsible for attention and for reward-based decision-making.

While some of these abnormalities may reflect an inborn vulnerability to drug use, others appear to be the result of long-term cocaine exposure. The report appears in the October 9 issue of Neuron.

"These data point to a mixture of both drug effects and predisposition underlying the structural alterations we observed," says Hans Breiter, MD, principal investigator of the Phenotype Genotype Project in Addiction and Mood Disorder in the MGH Departments of Radiology and Psychiatry. "They also suggest that a key feature of addiction – reduction in the range of activities in which addicts participate – has a neural signature in the form of reduced cortical thickness in frontal regions of the brain."

It is known that addicts make judgments and decisions differently than non-addicted people do. But it is not well understood how these differences relate to structural alterations in the brain – particularly changes in the cortex, the highly folded outer layer that helps plan, execute, and control behavior. Magnetic resonance imaging studies were taken of 20 cocaine addicts and 20 carefully matched control participants to investigate variations in cortical thickness. While the cortical thickness of some brain regions can vary widely among healthy individuals of similar age and background, the total brain volume is usually consistent.

In comparison to their healthy counterparts, cocaine addicts were found to have significantly less overall cortical volume, particularly in areas regulating reward function and involved with decision-making. The marked cortical thinness of areas involved in reward regulation and attention was not compensated by increases in other areas. In addition, although the cortex of some frontal regions is typically thicker in the right hemisphere than the left, this relationship was reversed for the addicts. Throughout the brain, cocaine addicts had much less variation in cortical thickness than did controls.

The participants also took part in several behavioral tests. One test of reward and motivation involves people pressing keyboard keys to control how long they viewed pictures of average and attractive faces. Addicts had much less variation than control participants did in their key pressing to view these faces and overall expressed a lower level of preference to all of the faces, including beautiful female faces toward which most healthy controls have strong positive responses. Those results correlated closely with the reduced cortical thickness in the reward regulation areas of addicts. In tests of the ability to pay careful attention to challenging tasks, the addicts also performed less well than control participants, which also correlated with thinner cortex in another region known to be important for attention.

The decreased variability of cortical thickness and assymetry between hemispheres seen in the addicts was not associated with how long they had been using drugs, Breiter notes, and is likely to reflect an inborn predisposition to drug use. Right- and left-side differences in the brain are important for many behaviors, and when they are altered, there is usually a genetic cause. In contrast, another brain region involved with the regulation of reward – the cingulate – had cortical thickness measures that were related to the length of cocaine exposure but not to how long participants used nicotine or alcohol, implying that cocaine itself caused that difference.

Together, these observations provide evidence that addiction-associated cortical thickness abnormalities may reflect both drug use and a pre-existing inclination to abuse drugs. "The severity of these cortical alterations point to the potential importance of prevention efforts to keep susceptible individuals from beginning to use cocaine," Breiter says. "Next we need to see if these findings are limited to cocaine users by testing larger groups of participants with different addictions and with commonly accompanying diagnoses like depression."

Sue McGreevey | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>