Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds abnormalities in cerebral cortex of cocaine addicts

10.10.2008
Changes in cortical thickness correlate with a primary feature of addiction, could reflect both predisposition and effects of drug exposure

A brain imaging study carried out at Massachusetts General Hospital (MGH) reveals abnormalities in the cortex – the outer surface of the brain – of cocaine addicts that appear to correlate with dysfunction in areas responsible for attention and for reward-based decision-making.

While some of these abnormalities may reflect an inborn vulnerability to drug use, others appear to be the result of long-term cocaine exposure. The report appears in the October 9 issue of Neuron.

"These data point to a mixture of both drug effects and predisposition underlying the structural alterations we observed," says Hans Breiter, MD, principal investigator of the Phenotype Genotype Project in Addiction and Mood Disorder in the MGH Departments of Radiology and Psychiatry. "They also suggest that a key feature of addiction – reduction in the range of activities in which addicts participate – has a neural signature in the form of reduced cortical thickness in frontal regions of the brain."

It is known that addicts make judgments and decisions differently than non-addicted people do. But it is not well understood how these differences relate to structural alterations in the brain – particularly changes in the cortex, the highly folded outer layer that helps plan, execute, and control behavior. Magnetic resonance imaging studies were taken of 20 cocaine addicts and 20 carefully matched control participants to investigate variations in cortical thickness. While the cortical thickness of some brain regions can vary widely among healthy individuals of similar age and background, the total brain volume is usually consistent.

In comparison to their healthy counterparts, cocaine addicts were found to have significantly less overall cortical volume, particularly in areas regulating reward function and involved with decision-making. The marked cortical thinness of areas involved in reward regulation and attention was not compensated by increases in other areas. In addition, although the cortex of some frontal regions is typically thicker in the right hemisphere than the left, this relationship was reversed for the addicts. Throughout the brain, cocaine addicts had much less variation in cortical thickness than did controls.

The participants also took part in several behavioral tests. One test of reward and motivation involves people pressing keyboard keys to control how long they viewed pictures of average and attractive faces. Addicts had much less variation than control participants did in their key pressing to view these faces and overall expressed a lower level of preference to all of the faces, including beautiful female faces toward which most healthy controls have strong positive responses. Those results correlated closely with the reduced cortical thickness in the reward regulation areas of addicts. In tests of the ability to pay careful attention to challenging tasks, the addicts also performed less well than control participants, which also correlated with thinner cortex in another region known to be important for attention.

The decreased variability of cortical thickness and assymetry between hemispheres seen in the addicts was not associated with how long they had been using drugs, Breiter notes, and is likely to reflect an inborn predisposition to drug use. Right- and left-side differences in the brain are important for many behaviors, and when they are altered, there is usually a genetic cause. In contrast, another brain region involved with the regulation of reward – the cingulate – had cortical thickness measures that were related to the length of cocaine exposure but not to how long participants used nicotine or alcohol, implying that cocaine itself caused that difference.

Together, these observations provide evidence that addiction-associated cortical thickness abnormalities may reflect both drug use and a pre-existing inclination to abuse drugs. "The severity of these cortical alterations point to the potential importance of prevention efforts to keep susceptible individuals from beginning to use cocaine," Breiter says. "Next we need to see if these findings are limited to cocaine users by testing larger groups of participants with different addictions and with commonly accompanying diagnoses like depression."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>