Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study explains why light worsens migraine headaches

Extreme light sensitivity in blind patients helps researchers identify a new visual pathway for photophobia during migraines

Ask anyone who suffers from migraine headaches what they do when they're having an attack, and you're likely to hear "go into a dark room." And although it's long been known that light makes migraines worse, the reason why has been unclear.

Now scientists at Beth Israel Deaconess Medical Center (BIDMC) have identified a new visual pathway that underlies sensitivity to light during migraine in both blind individuals and in individuals with normal eyesight. The findings, which appear today in the Advance On-line issue of Nature Neuroscience, help explain the mechanism behind this widespread condition.

A one-sided, throbbing headache associated with a number of symptoms, including nausea, vomiting, and fatigue, migraines are notoriously debilitating and surprisingly widespread, affecting more than 30 million individuals in the U.S. alone. Migraine pain is believed to develop when the meninges, the system of membranes surrounding the brain and central nervous system, becomes irritated, which stimulates pain receptors and triggers a series of events that lead to the prolonged activation of groups of sensory neurons.

"This explains the throbbing headache and accompanying scalp and neck-muscle tenderness experienced by many migraine patients," explains the study's senior author Rami Burstein, PhD, Professor of Anesthesia and Critical Care Medicine at BIDMC and Harvard Medical School.

In addition, for reasons that were unknown, nearly 85 percent of migraine patients are also extremely sensitive to light, a condition known as photophobia.

"Migraine patients may wear sunglasses, even at night," he notes, adding that the dimmest of light can make migraine pain worse. Extremely disabling, photophobia prevents patients from such routine activities as reading, writing, working or driving.

It was the observation that even blind individuals who suffer from migraines were experiencing photophobia that led Burstein and first author Rodrigo Noseda, PhD, to hypothesize that signals transmitted from the retina via the optic nerve were somehow triggering the intensification of pain.

The investigators studied two groups of blind individuals who suffer migraine headaches. Patients in the first group were totally blind due to eye diseases such as retinal cancer and glaucoma; they were unable to see images or to sense light and therefore could not maintain normal sleep-wake cycles. Patients in the second group were legally blind due to retinal degenerative diseases such as retinitis pigmentosa; although they were unable to perceive images, they could detect the presence of light and maintain normal sleep-wake cycles.

"While the patients in the first group did not experience any worsening of their headaches from light exposure, the patients in the second group clearly described intensified pain when they were exposed to light, in particular blue or gray wavelengths," explains Burstein. "This suggested to us that the mechanism of photophobia must involve the optic nerve, because in totally blind individuals, the optic nerve does not carry light signals to the brain.

"We also suspected that a group of recently discovered retinal cells containing melanopsin photoreceptors [which help control biological functions including sleep and wakefulness] is critically involved in this process, because these are the only functioning light receptors left among patients who are legally blind."

The scientists took these ideas to the laboratory, where they performed a series of experiments in an animal model of migraine. After injecting dyes into the eye, they traced the path of the melanopsin retinal cells through the optic nerve to the brain, where they found a group of neurons that become electrically active during migraine.

"When small electrodes were inserted into these 'migraine neurons,' we discovered that light was triggering a flow of electrical signals that was converging on these very cells," says Burstein. "This increased their activity within seconds."

And even when the light was removed, he notes, these neurons remained activated. "This helps explain why patients say that their headache intensifies within seconds after exposure to light, and improves 20 to 30 minutes after being in the dark."

The discovery of this pathway provides scientists with a new avenue to follow in working to address the problem of photophobia.

"Clinically, this research sets the stage for identifying ways to block the pathway so that migraine patients can endure light without pain," adds Burstein.

In addition to Noseda and Burstein, coauthors include BIDMC investigators Vanessa Kainz, Moshe Jakubowski, Joshua Gooley, and Clifford B. Saper; and Kathleen Digre of the University of Utah.

This study was funded by grants from the National Institutes of Health and from the Research to Prevent Blindness.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks among the top four in National Institutes Health of funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>