Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explains why light worsens migraine headaches

11.01.2010
Extreme light sensitivity in blind patients helps researchers identify a new visual pathway for photophobia during migraines

Ask anyone who suffers from migraine headaches what they do when they're having an attack, and you're likely to hear "go into a dark room." And although it's long been known that light makes migraines worse, the reason why has been unclear.

Now scientists at Beth Israel Deaconess Medical Center (BIDMC) have identified a new visual pathway that underlies sensitivity to light during migraine in both blind individuals and in individuals with normal eyesight. The findings, which appear today in the Advance On-line issue of Nature Neuroscience, help explain the mechanism behind this widespread condition.

A one-sided, throbbing headache associated with a number of symptoms, including nausea, vomiting, and fatigue, migraines are notoriously debilitating and surprisingly widespread, affecting more than 30 million individuals in the U.S. alone. Migraine pain is believed to develop when the meninges, the system of membranes surrounding the brain and central nervous system, becomes irritated, which stimulates pain receptors and triggers a series of events that lead to the prolonged activation of groups of sensory neurons.

"This explains the throbbing headache and accompanying scalp and neck-muscle tenderness experienced by many migraine patients," explains the study's senior author Rami Burstein, PhD, Professor of Anesthesia and Critical Care Medicine at BIDMC and Harvard Medical School.

In addition, for reasons that were unknown, nearly 85 percent of migraine patients are also extremely sensitive to light, a condition known as photophobia.

"Migraine patients may wear sunglasses, even at night," he notes, adding that the dimmest of light can make migraine pain worse. Extremely disabling, photophobia prevents patients from such routine activities as reading, writing, working or driving.

It was the observation that even blind individuals who suffer from migraines were experiencing photophobia that led Burstein and first author Rodrigo Noseda, PhD, to hypothesize that signals transmitted from the retina via the optic nerve were somehow triggering the intensification of pain.

The investigators studied two groups of blind individuals who suffer migraine headaches. Patients in the first group were totally blind due to eye diseases such as retinal cancer and glaucoma; they were unable to see images or to sense light and therefore could not maintain normal sleep-wake cycles. Patients in the second group were legally blind due to retinal degenerative diseases such as retinitis pigmentosa; although they were unable to perceive images, they could detect the presence of light and maintain normal sleep-wake cycles.

"While the patients in the first group did not experience any worsening of their headaches from light exposure, the patients in the second group clearly described intensified pain when they were exposed to light, in particular blue or gray wavelengths," explains Burstein. "This suggested to us that the mechanism of photophobia must involve the optic nerve, because in totally blind individuals, the optic nerve does not carry light signals to the brain.

"We also suspected that a group of recently discovered retinal cells containing melanopsin photoreceptors [which help control biological functions including sleep and wakefulness] is critically involved in this process, because these are the only functioning light receptors left among patients who are legally blind."

The scientists took these ideas to the laboratory, where they performed a series of experiments in an animal model of migraine. After injecting dyes into the eye, they traced the path of the melanopsin retinal cells through the optic nerve to the brain, where they found a group of neurons that become electrically active during migraine.

"When small electrodes were inserted into these 'migraine neurons,' we discovered that light was triggering a flow of electrical signals that was converging on these very cells," says Burstein. "This increased their activity within seconds."

And even when the light was removed, he notes, these neurons remained activated. "This helps explain why patients say that their headache intensifies within seconds after exposure to light, and improves 20 to 30 minutes after being in the dark."

The discovery of this pathway provides scientists with a new avenue to follow in working to address the problem of photophobia.

"Clinically, this research sets the stage for identifying ways to block the pathway so that migraine patients can endure light without pain," adds Burstein.

In addition to Noseda and Burstein, coauthors include BIDMC investigators Vanessa Kainz, Moshe Jakubowski, Joshua Gooley, and Clifford B. Saper; and Kathleen Digre of the University of Utah.

This study was funded by grants from the National Institutes of Health and from the Research to Prevent Blindness.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks among the top four in National Institutes Health of funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu
http://www.bidmc.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>