Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explaining parasite gene expression could help fight toxoplasmosis and malaria

03.01.2014
A newly identified protein and other proteins it interacts with could become effective targets for new drugs to control the parasite that cause toxoplasmosis, researchers led by investigators at Indiana University School of Medicine have reported.

The discovery could also open new research pathways for treatments for malaria.

The researchers determined that the protein, an enzyme called GCN5b, is necessary for the Toxoplasma parasite to replicate, so interfering with its activities could control the parasite. GCN5b is part of the molecular machinery that turns genes on and off in the parasite, working with other proteins that, the researchers discovered, are more plant-like than their counterparts in humans.

"GCN5b is a very different protein than its human counterpart, and proteins it interacts with are not found in humans," said William J. Sullivan Jr., Ph.D., associate professor of pharmacology and toxicology.

"That's what makes this exciting -- rather than just having one enzyme that we could go after, there could be a whole collection of associated enzyme components that could be potentially targeted for drug therapies to control this parasite," he said.

In discovering that some of the proteins interacting with GCN5b are plant-like transcription factors -- proteins that bind to DNA -- the researchers filled in what had been a missing link explaining how the parasites control the process of turning genes on and off, known as gene expression. The plant-like transcription factors recruit the GCN5b enzyme complex to activate a wide variety of genes for expression.

When the research team disabled the GCN5b complex, parasite replication swiftly came to a halt.

Dr. Sullivan and his colleagues reported their findings in the Jan. 2, 2014, online edition of the journal PLOS Pathogens.

An estimated 60 million people in the United States are infected with the toxoplasmosis parasite, but in most cases the infection produces flu-like symptoms or no symptoms at all. However, for people with immune system problems – such as those undergoing chemotherapy or people with AIDS – the disease can cause serious effects including lung problems, blurred vision and seizures. Also, infants born to mothers who are infected for the first time during or shortly before pregnancy are at risk for severe complications, miscarriages or stillbirths.

One of the most common routes to human infection is via cats, in particular their feces or litter. Eating undercooked meat from infected livestock can also result in human infection.

Although there are anti-parasitic drugs available to treat acute episodes of toxoplasmosis, it's currently impossible to completely eliminate the parasite because it can switch from an active to a latent cyst form in the body. Since GCN5b is active during both acute and latent stages, the enzyme and its associating components are very promising candidates for drug targeting, Dr. Sullivan said. Because the transcription factors are plant-like proteins not found in humans, drugs targeting them would be much less likely to affect human proteins and cause adverse effects.

Researchers also use Toxoplasma as a model organism for the malaria parasite Plasmodium, meaning much of what is learned about Toxoplasma could lead to new treatments for a disease that struck an estimated 207 million people worldwide in 2012 and caused an estimated 627,000 deaths, most of them children. Dr. Sullivan noted that the malaria parasite also possesses a GCN5 enzyme, as well as the plant-like proteins.

Other investigators contributing to the research were Jiachen Wang, Stacy E. Dixon, Victoria Jeffers and Ting-Kai Liu of the Indiana University School of Medicine; Li-Min Ting, Matthew M. Croken, Myrasol Calloway and Kami Kim of the Albert Einstein College of Medicine, Bronx, NY, and Dominique Cannella and Mohamed Ali Hakimi of Universite Joseph Fourier, Grenoble, France.

The research was supported by grants from the National Institutes of Health: AI077502, AI087625, T32 GM007491 and AI092801. Additional support came from the following NIH-funded shared instrumentation grants: 1S10RR019352 and 1S10RR021056.

Eric Schoch | EurekAlert!
Further information:
http://www.iu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>