Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study to look at economics, groundwater use of bioenergy feedstocks

04.03.2011
Biofuel feedstock production in the Texas High Plains could significantly change the crop mix, which could affect regional income and groundwater consumption, according to Texas AgriLife Research and Texas AgriLife Extension Service economists.

Dr. Steve Amosson, AgriLife Extension economist in Amarillo, and Dr. Seong Park, AgriLife Research economist in Vernon, are joining other economists to model the socio-economic effects of climate change on the Ogallala Aquifer.

The project, Economics and Groundwater-Use Implications of Bioenergy Feedstocks Production in the Ogallala Aquifer Program Region, is funded by the Ogallala Aquifer federal research program of the U.S. Department of Agriculture-Agricultural Research Service.

"The High Plains' crops, livestock and meat processing sectors, as well as oil and gas production, literally run on water from the Ogallala Aquifer," Amosson said. "However, this region is facing an uncertain future, after significant pumping for the past 50 years has caused water tables to fall generally across the aquifer."

With water demand so strong and the aquifer serving as the primary source of that water, it is important to know how climate change and biofuels development in the future could affect availability, Amosson said.

"Projections of a warmer and drier future for this region threaten to raise cropping water needs and thus, the rate of aquifer depletion, while also lowering the natural recharge," he said. "The current biofuels policy and associated high commodity prices contribute additional pressures on those water resources."

The information generated from the study will present a comprehensive characterization of the economic and groundwater implications regarding allocation of limited agricultural land and water between crops and biofuel feedstock production, Amosson said. Then they can determine potential implications for farm income and regional activity.

Park said if more farmers begin producing a cellulosic feedstock or a drought-tolerant one, those changes would affect the Ogallala Aquifer water use.

"We want to look at the effects, look at the changes of land use, and see what the regional impact will be both economically and socially," he said. "In addition to the job creation aspect, we want to look at the environmental or carbon footprint as related to water use. We want to see what water consumption versus greenhouse gas production is."

"What if carbon emission rates change, how does that affect things?" Park said. "This is a key point for our stakeholders."

It will be important for producers to know how to adjust water use, cropping and land-use practices, and water-management practices to adapt to climate change and increasing agricultural demands to provide sustainability of the Ogallala Aquifer, he said.

Through the study, Park said, they hope to be able to outline the implications of climate change for the region and biofuel feedstock production possibilities.

They will look particularly at cellulosic production using perennial grasses such as switchgrass on marginal land with fewer inputs of water and fertilizers.

"We think this study will make a contribution to science addressing the issues of groundwater sensitivity to climate change that are explicitly called out as needing further work in the Intergovernmental Panel on Climate Change special report on water," Park said.

The two-year project began in January with the assimilation of information already gathered by the Intergovernmental Panel on Climate Change and local scientists, he said.

The plan is to develop over the next two years a dynamic multi-county land allocation model that integrates agriculture, hydrology, climate and geography, he said. This has already been completed for Dallam County, which is serving as the test county.

The economists will use land distribution of crops from 2009 as a baseline in each county, Park said. With that, they will calculate groundwater consumption and project the optimal land allocation or crop mix at the county level over the 2010-2050 period using IPCC climate change scenarios and projected regional mandates for crop ethanol production.

Another component of the study will include greenhouse gas emissions and carbon sequestration, based on the Forest and Agricultural Sector Optimization Model-Greenhouse Gas Version developed by a team led by Dr. Bruce McCarl, Nobel laureate and Texas A&M University Distinguished and Regents professor of agricultural economics.

"Once it is developed, this linked hydrological land-use regionalized groundwater model can be used to address a variety of future issues regarding land-use and water-use planning," Park said.

Dr. Seong Park | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>