Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study to look at economics, groundwater use of bioenergy feedstocks

Biofuel feedstock production in the Texas High Plains could significantly change the crop mix, which could affect regional income and groundwater consumption, according to Texas AgriLife Research and Texas AgriLife Extension Service economists.

Dr. Steve Amosson, AgriLife Extension economist in Amarillo, and Dr. Seong Park, AgriLife Research economist in Vernon, are joining other economists to model the socio-economic effects of climate change on the Ogallala Aquifer.

The project, Economics and Groundwater-Use Implications of Bioenergy Feedstocks Production in the Ogallala Aquifer Program Region, is funded by the Ogallala Aquifer federal research program of the U.S. Department of Agriculture-Agricultural Research Service.

"The High Plains' crops, livestock and meat processing sectors, as well as oil and gas production, literally run on water from the Ogallala Aquifer," Amosson said. "However, this region is facing an uncertain future, after significant pumping for the past 50 years has caused water tables to fall generally across the aquifer."

With water demand so strong and the aquifer serving as the primary source of that water, it is important to know how climate change and biofuels development in the future could affect availability, Amosson said.

"Projections of a warmer and drier future for this region threaten to raise cropping water needs and thus, the rate of aquifer depletion, while also lowering the natural recharge," he said. "The current biofuels policy and associated high commodity prices contribute additional pressures on those water resources."

The information generated from the study will present a comprehensive characterization of the economic and groundwater implications regarding allocation of limited agricultural land and water between crops and biofuel feedstock production, Amosson said. Then they can determine potential implications for farm income and regional activity.

Park said if more farmers begin producing a cellulosic feedstock or a drought-tolerant one, those changes would affect the Ogallala Aquifer water use.

"We want to look at the effects, look at the changes of land use, and see what the regional impact will be both economically and socially," he said. "In addition to the job creation aspect, we want to look at the environmental or carbon footprint as related to water use. We want to see what water consumption versus greenhouse gas production is."

"What if carbon emission rates change, how does that affect things?" Park said. "This is a key point for our stakeholders."

It will be important for producers to know how to adjust water use, cropping and land-use practices, and water-management practices to adapt to climate change and increasing agricultural demands to provide sustainability of the Ogallala Aquifer, he said.

Through the study, Park said, they hope to be able to outline the implications of climate change for the region and biofuel feedstock production possibilities.

They will look particularly at cellulosic production using perennial grasses such as switchgrass on marginal land with fewer inputs of water and fertilizers.

"We think this study will make a contribution to science addressing the issues of groundwater sensitivity to climate change that are explicitly called out as needing further work in the Intergovernmental Panel on Climate Change special report on water," Park said.

The two-year project began in January with the assimilation of information already gathered by the Intergovernmental Panel on Climate Change and local scientists, he said.

The plan is to develop over the next two years a dynamic multi-county land allocation model that integrates agriculture, hydrology, climate and geography, he said. This has already been completed for Dallam County, which is serving as the test county.

The economists will use land distribution of crops from 2009 as a baseline in each county, Park said. With that, they will calculate groundwater consumption and project the optimal land allocation or crop mix at the county level over the 2010-2050 period using IPCC climate change scenarios and projected regional mandates for crop ethanol production.

Another component of the study will include greenhouse gas emissions and carbon sequestration, based on the Forest and Agricultural Sector Optimization Model-Greenhouse Gas Version developed by a team led by Dr. Bruce McCarl, Nobel laureate and Texas A&M University Distinguished and Regents professor of agricultural economics.

"Once it is developed, this linked hydrological land-use regionalized groundwater model can be used to address a variety of future issues regarding land-use and water-use planning," Park said.

Dr. Seong Park | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>