Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers natural hybridization produced dolphin species

09.01.2014
First documented natural hybrid species among marine mammals

A newly published study on the clymene dolphin, a small and sleek marine mammal living in the Atlantic Ocean, shows that this species arose through natural hybridization between two closely related dolphins species, according to authors from the Wildlife Conservation Society, the American Museum of Natural History's Sackler Institute for Comparative Genomics, the University of Lisbon, and other contributing groups.


A newly published study on the clymene dolphin, a small and sleek marine mammal living in the Atlantic Ocean, shows that the species arose through natural hybridization between two closely related dolphins species, the spinner dolphin and the striped dolphin.

Credit: R. Pitman

In a molecular analysis including the closely related spinner and striped dolphins, scientists conclude that the clymene dolphin is the product of natural hybridization, a process that is more common for plants, fishes, and birds, but quite rare in mammals.

The study appears in the online journal PLOS ONE. The authors include: Ana R. Amaral of the University of Lisbon, Portugal, and the American Museum of Natural History; Gretchen Lovewell of the Mote Marine Laboratory; Maria Manuela Coelho of the University of Lisbon; George Amato of the American Museum of Natural History; and Howard Rosenbaum of the Wildlife Conservation Society and American Museum of Natural History.

"Our study represents the first such documented instance of a marine mammal species originating through the hybridization of two other species," said Ana R. Amaral, lead author of the study and research associate at the American Museum of Natural History. "This also provides us with an excellent opportunity to better understand the mechanisms of evolution."

The classification of the clymene dolphin has been a longstanding challenge to taxonomists, who initially considered it to be a subspecies of the spinner dolphin. Then in 1981, thorough morphological analyses established it as a recognized distinct species. In the current study, researchers sought to clarify outstanding questions about the dolphin's origin and relationships with rigorous genetic analyses.

"With its similar physical appearance to the most closely related species, our genetic results now provide the key insights into this species origin" said Dr. Howard Rosenbaum, Director for WCS's Ocean Giants Program and a senior author on the study. "Very little is known about the clymene dolphin, whose scientific name translated from Greek is oceanid, but ironically also can mean fame or notoriety. Hopefully, our work will help draw greater attention to these dolphins in large parts of their range."

Based on research conducted at the American Museum of Natural History's Sackler Institute for Comparative Genomics, the authors examined the nuclear and mitochondrial DNA from skin samples obtained from both free-ranging dolphins by means of biopsy darts and deceased dolphins obtained through stranding events. Using samples from 72 individual dolphins (both clymene dolphins and the closely related spinner and striped dolphins), the researchers amplified one mitochondrial DNA marker and six nuclear DNA markers as a means of analyzing the evolutionary relationship between the clymene dolphin and its closest relatives.

The level of discordance among the nuclear and mitochondrial markers from the three species, the authors assert, is best explained as an instance of natural hybridization. Specifically, the team discovered that while the mitochondrial genome of the clymene dolphin most resembled the striped dolphin, the nuclear genome revealed a closer relation to the spinner dolphin. The authors also noted that continued hybridization may still occur, although at low levels.

The clymene dolphin grows up to nearly seven feet in length and inhabits the tropical and temperate waters of the Atlantic Ocean. Threats to the species include incidental capture as bycatch in fishing nets, which in some parts of the range has turned into direct hunts for either human consumption or shark bait.

The authors thank NOAA Fisheries for funding to initiate this project.
http://dx.plos.org/10.1371/journal.pone.0083645

John Delaney | EurekAlert!
Further information:
http://www.wcs.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>