Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers how pancreatic cancer spreads to the liver

19.05.2015

An international team led by Weill Cornell Medical College investigators has illuminated the precise molecular steps that enable pancreatic cancer to spread to the liver -- the event that makes the most common form of the disease lethal. By understanding this process, investigators say their discovery can lead to targeted treatments that delay metastasis, and could offer clinicians a new biomarker to test for the earliest signs of pancreatic cancer.

The study, published May 18 in Nature Cell Biology, focuses on the role of small, spherical tumor-secreted packages, called exosomes, which contain tumor-derived proteins, in preparing a liver microenvironment fertile for pancreatic cancer metastasis.


This infographic illustrates the precise molecular steps that enable pancreatic cancer to spread to the liver.

Credit: Weill Cornell Medical College

Nearly 49,000 people in the United States will be diagnosed with pancreatic cancer, and more than 40,000 of them will succumb to it, according to estimates from the American Cancer Society. Pancreatic cancers are among the most lethal cancers -- only six percent of patients survive five years after diagnosis, with the median survival rate being just six months.

"What makes this cancer so lethal is that patients don't generally become symptomatic -- and as such aren't diagnosed -- until the cancer is very advanced and treatment options are limited," said senior author Dr. David Lyden, the Stavros S. Niarchos Professor in Pediatric Cardiology and a professor of pediatrics in the Department of Pediatrics at Weill Cornell Medical College.

In the study, the investigators recreated the environment for pancreatic cancer using mouse models and discovered that exosomes were finding their way to the liver during the cancer's earliest stages. Once in the liver, the exosomes were taken up by resident immune cells, called Kupffer cells. This process changed the Kupffer cells' gene expression and protein composition, and educated them to produce a powerful protein. This protein, in turn, affected the behavior of a group of cells, inducing liver fibrosis. Liver fibrosis is an overly exuberant wound healing process that can interfere with normal liver function, and creates a microenvironment auspicious for tumor seeding and growth.

When investigating how exosomes exerted these effects on liver cells, Dr. Lyden and his team found that pancreatic cancer exosomes contain a protein called macrophage migration inhibitory factor (MIF). When the investigators eliminated MIF from exosomes, they noticed that they had prevented the creation of a fibrotic, tumor-supporting environment in the liver.

"In mouse models of pancreatic cancer progression, exosomes containing MIF are released in circulation prior to the onset of a recognized pancreatic carcinoma and can 'educate' the liver, inducing fibrosis," said first authorDr. Bruno Costa Silva, an instructor of cell and developmental biology in pediatrics at Weill Cornell. "Our findings suggest that a microenvironment ripe for metastasis is generated at an earlier stage of the disease than previously recognized."

Once they understood this process, the investigators attempted to block each individual step in this sequence. "Disrupting just one part of the process at any point of the circuit decreased metastasis, a discovery that could lead to the development of multi-targeted therapies that could prolong patients' lives," said Dr. Lyden, who also has appointments in the Sandra and Edward Meyer Cancer Center and the Gale and Ira Drukier Institute for Children's Health. Dr. Lyden and his team conduct their research in the Children's Cancer and Blood Foundation labs at Weill Cornell.

Dr. Lyden and his team also found that MIF is highly expressed in exosomes circulating in patients who have advanced pancreatic cancer. When they examined pancreatic cancer blood samples, the scientists discovered that exosomal MIF was much higher in patients who went on to develop liver metastasis than in those who escaped it. They say this protein signature could be used to predict which patients would then go on to develop liver metastatic disease. These discoveries were made possible by an international collaboration between researchers at Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, University of Nebraska Medical Center, University of Pennsylvania and Oslo University Hospital.

Since five percent of patients diagnosed with pancreatitis -- a disease characterized by inflammation -- go on to develop pancreatic cancer, the investigators believe MIF could also serve as a biomarker for clinicians to monitor disease progression. Dr. Lyden and his team are currently testing whether measuring MIF levels in exosomes isolated from patients' blood can accurately estimate the risk of pancreatic cancer in patients with non-malignant pancreatic lesions. This type of "liquid biopsy" could allow the clinicians to initiate treatments, such as surgical resection, earlier in patients at risk, preventing disease progression.

Jen Gundersen | EurekAlert!

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>