Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers how pancreatic cancer spreads to the liver

19.05.2015

An international team led by Weill Cornell Medical College investigators has illuminated the precise molecular steps that enable pancreatic cancer to spread to the liver -- the event that makes the most common form of the disease lethal. By understanding this process, investigators say their discovery can lead to targeted treatments that delay metastasis, and could offer clinicians a new biomarker to test for the earliest signs of pancreatic cancer.

The study, published May 18 in Nature Cell Biology, focuses on the role of small, spherical tumor-secreted packages, called exosomes, which contain tumor-derived proteins, in preparing a liver microenvironment fertile for pancreatic cancer metastasis.


This infographic illustrates the precise molecular steps that enable pancreatic cancer to spread to the liver.

Credit: Weill Cornell Medical College

Nearly 49,000 people in the United States will be diagnosed with pancreatic cancer, and more than 40,000 of them will succumb to it, according to estimates from the American Cancer Society. Pancreatic cancers are among the most lethal cancers -- only six percent of patients survive five years after diagnosis, with the median survival rate being just six months.

"What makes this cancer so lethal is that patients don't generally become symptomatic -- and as such aren't diagnosed -- until the cancer is very advanced and treatment options are limited," said senior author Dr. David Lyden, the Stavros S. Niarchos Professor in Pediatric Cardiology and a professor of pediatrics in the Department of Pediatrics at Weill Cornell Medical College.

In the study, the investigators recreated the environment for pancreatic cancer using mouse models and discovered that exosomes were finding their way to the liver during the cancer's earliest stages. Once in the liver, the exosomes were taken up by resident immune cells, called Kupffer cells. This process changed the Kupffer cells' gene expression and protein composition, and educated them to produce a powerful protein. This protein, in turn, affected the behavior of a group of cells, inducing liver fibrosis. Liver fibrosis is an overly exuberant wound healing process that can interfere with normal liver function, and creates a microenvironment auspicious for tumor seeding and growth.

When investigating how exosomes exerted these effects on liver cells, Dr. Lyden and his team found that pancreatic cancer exosomes contain a protein called macrophage migration inhibitory factor (MIF). When the investigators eliminated MIF from exosomes, they noticed that they had prevented the creation of a fibrotic, tumor-supporting environment in the liver.

"In mouse models of pancreatic cancer progression, exosomes containing MIF are released in circulation prior to the onset of a recognized pancreatic carcinoma and can 'educate' the liver, inducing fibrosis," said first authorDr. Bruno Costa Silva, an instructor of cell and developmental biology in pediatrics at Weill Cornell. "Our findings suggest that a microenvironment ripe for metastasis is generated at an earlier stage of the disease than previously recognized."

Once they understood this process, the investigators attempted to block each individual step in this sequence. "Disrupting just one part of the process at any point of the circuit decreased metastasis, a discovery that could lead to the development of multi-targeted therapies that could prolong patients' lives," said Dr. Lyden, who also has appointments in the Sandra and Edward Meyer Cancer Center and the Gale and Ira Drukier Institute for Children's Health. Dr. Lyden and his team conduct their research in the Children's Cancer and Blood Foundation labs at Weill Cornell.

Dr. Lyden and his team also found that MIF is highly expressed in exosomes circulating in patients who have advanced pancreatic cancer. When they examined pancreatic cancer blood samples, the scientists discovered that exosomal MIF was much higher in patients who went on to develop liver metastasis than in those who escaped it. They say this protein signature could be used to predict which patients would then go on to develop liver metastatic disease. These discoveries were made possible by an international collaboration between researchers at Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, University of Nebraska Medical Center, University of Pennsylvania and Oslo University Hospital.

Since five percent of patients diagnosed with pancreatitis -- a disease characterized by inflammation -- go on to develop pancreatic cancer, the investigators believe MIF could also serve as a biomarker for clinicians to monitor disease progression. Dr. Lyden and his team are currently testing whether measuring MIF levels in exosomes isolated from patients' blood can accurately estimate the risk of pancreatic cancer in patients with non-malignant pancreatic lesions. This type of "liquid biopsy" could allow the clinicians to initiate treatments, such as surgical resection, earlier in patients at risk, preventing disease progression.

Jen Gundersen | EurekAlert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>